
CSE 1310 - Introduction to Computers &
Programming

Expressions, Statements, and Basic Control

Alex Dillhoff

University of Texas at Arlington

Expressions and Statements

An expression is a sequence of tokens that evaluates to a
numerical quantity.

▶ 1 + 1;

▶ y = 3;

▶ 1;

▶ 46 + 8 / (20 / (1 * 0.5));

▶ x * 2;

Expressions and Statements

An expression is a sequence of tokens that evaluates to a
numerical quantity.

▶ 1 + 1;

▶ y = 3;

▶ 1;

▶ 46 + 8 / (20 / (1 * 0.5));

▶ x * 2;

Expressions and Statements

A statement is anything that can be evaluated by the compiler.

▶ int x;

▶ x;

▶ y = 3;

▶ int y = x * 2;

▶ ;

Expressions and Statements

A statement is anything that can be evaluated by the compiler.

▶ int x;

▶ x;

▶ y = 3;

▶ int y = x * 2;

▶ ;

lvalues and rvalues

An lvalue is an expression with a location in memory.

▶ x

▶ myVar

▶ v_ptr

▶ avg_height

lvalues and rvalues

An lvalue is an expression with a location in memory.

▶ x

▶ myVar

▶ v_ptr

▶ avg_height

lvalues and rvalues

An rvalue is any expression not representing some location in
memory.

▶ x + 3;

▶ 5;

▶ -1 * y + (-x);

▶ 1 / 0.5;

lvalues and rvalues

An rvalue is any expression not representing some location in
memory.

▶ x + 3;

▶ 5;

▶ -1 * y + (-x);

▶ 1 / 0.5;

lvalue and rvalue Examples

▶ lvalues can be used on either side of an assignment.

▶ rvalues can only be used on the right side of an assignment.

Blocks and Compound Statements

A block is a variable number of statements contained between
braces.

{

x = 3;

int y = x * 0.5;

}

Blocks and Compound Statements

Groups of statements contained within a block are called
compound statements.

{

float x = 0.1;

{

int y = x * 3;

printf("%d %d\n", x, y);

}

}

Blocks and Scope

Variables defined in a block are called local variables.

{

int x = 1;

{

float y = 2.9;

printf("x = %d\n", x);

}

printf("%d\n", y);

}

Blocks and Scope

What is the printed value of y in the previous example?

y does not exist.

Local variables only exist within their scope.

Blocks and Scope

What is the printed value of y in the previous example?

y does not exist.

Local variables only exist within their scope.

A note of formatting

In the previous examples, it was easy to tell which statements
belonged to which block. The statements of each block were
indented.

The number of spaces to use for indentation can change from
group to group, but it is generally considered good formatting to
indent statements such that they visually represent their scope.

Adding Control – if-else Statements

The syntax of control statements is very similar throughout many
languages. Basic control can be added to the program through if

and else statements.

Adding Control – if-else Statements

scanf("%d", &a);

if (a == 0) {

printf("The value is 0.\n");

} else {

printf("The value is not 1.\n");

}

Adding Control - if-else Statements
Example: Checking input commands from a menu.

char choice;

scanf("%c", &choice);

if (choice == 'q') {

printf("Exiting the program.\n");

} else if (choice == 'l') {

printf("Load option selected.\n")

} else if (choice == 'p') {

printf("Print option selected.\n");

} else {

printf("Invalid command.\n");

}

if-else Examples

▶ Checking scanf

▶ Even/odd check

▶ ID check

Adding Control - switch Statement

Another way to represent the previous example.
switch (choice) {

case 'q':

printf("Exiting the program.\n");

case 'l':

printf("Load option selected.\n");

case 'p':

printf("Print option selected.\n");

default:

printf("Invalid command.\n");

}

Adding Control - switch Statement

The previous example prints everything else below the option that is
selected... WHY?

The statements are executed sequentially within the block.

Adding Control - switch Statement

The previous example prints everything else below the option that is
selected... WHY?

The statements are executed sequentially within the block.

Breaking out of switch
We can prevent sequential execution with break.

switch (choice) {

case 'q':

printf("Exiting the program.\n");

break;

case 'l':

printf("Load option selected.\n");

break;

case 'p':

printf("Print option selected.\n");

break;

default:

printf("Invalid command.\n");

break;

}

Breaking out of switch

A break statement allows the control to exit the switch statement.

It also allows us to break out of loops (more on that later).

switch Examples

▶ Pyramid

Relational Operators

▶ <= is less than or equal to

▶ >= is greater than or equal to

▶ == is equal to

▶ != is not equal to

▶ < is less than

▶ > is greater than

Relational Operators – Examples

▶ Check if the input matches a required value.

▶ Verify that an input is within an acceptable range.

Equality and Assignment

Common mistake when programming:

if (a = 1) {

printf("Is this true?\n");

}

This will always be true.

Equality and Assignment

Common mistake when programming:

if (a = 1) {

printf("Is this true?\n");

}

This will always be true.

Operator Precedence

Operator Precendence Chart

https://en.cppreference.com/w/c/language/operator_precedence

Logical Operators

▶ ! logical NOT

▶ && logical AND

▶ || logical OR

Logical operators are used to test truth values between expressions
or to negate an expression.

▶ a * b && c - a

▶ a || b

▶ !TRUE

Short-circuit Evaluation

Expressions are evaluated from left to right, if a condition is met
then the resulting expressions are not evaluated.

Example 1

expr1 || expr2

If expr1 is true, then expr2 will not be evaluated.

Short-circuit Evaluation

Expressions are evaluated from left to right, if a condition is met
then the resulting expressions are not evaluated.

Example 2

expr1 && expr2

If expr1 is false, then expr2 will not be evaluated.

Logical Operators – Examples

▶ Verify that the username and password match.

▶ Verify that an input is within an acceptable range.

The Ternary Operator

C has a ternary (three inputs) operator that allows us to write a
conditional expression in a single line.

expr1 ? expr2 : expr3

The Ternary Operator

expr1 ? expr2 : expr3

▶ expr1 is first evaluated.

▶ If it is true, expr2 is evaluated and becomes the result of the
expression.

▶ If it is false, expr3 is evaluated and becomes the result of the
expression.

The Ternary Operator

This is equivalent to the following if-else statement:

if (expr1) {

expr2;

} else {

expr3;

}

