
CSE 1310 - Introduction to Computers &
Programming

Functions

Alex Dillhoff

University of Texas at Arlington



Functions

Functions in programming are named blocks of code that execute
some number of statements.

▶ They have identifiers.

▶ They can accept arguments.

▶ They can return values.

▶ They enable modularization in code.



Functions Definitions in C

Functions are defined in C with the following syntax:

Syntax

type function_name(params) {

statements

}

Example

int is_odd(int number) {

return number % 2;

}



Function Types

The type of a function is defined by what it returns.

▶ Scalar type: int, float, etc.

▶ Pointers

▶ Structures

▶ Unions



Function Identifiers

Rules for function identifiers are the same as for variable identifiers.

▶ Consist of numbers, letters, and underscores.

▶ CANNOT start with a number.

▶ CANNOT be a reserved word.



Function Parameters

Functions can accept parameters or void.

Any parameters that are within the function header are called
formal parameters.

The variables passed in the function call are called actual
parameters.



Uses of Functions

They are very useful in separating distinct tasks or chunks of logic.

Functions should be defined to complete a specific task.

Functions provide a way to communicate data between modules in
a program.



Intra-Program Communication

Functions communicate with other functions through the return
value and their formal arguments.

▶ Arguments can be as general or specific as the task requires.

▶ Return values can be the results of a search, a program state,
result of a computation, etc.



Returning Values

Functions are not required to return anything at all. Both of the
following are valid definitions:
No Return

void func() {

return;

}

Return Value

float func(float a, float b) {

return a * b;

}



Scope in Functions

▶ Functions are global by default.

▶ Qualifying a function with static restricts their access to the
file in which they are defined.

▶ Scalar value arguments passed into the function are local.

▶ Variables created in a function are local.



Scope in Functions

EXAMPLE: function_scope.c



Declaring a Function

Function prototypes can be declared before they are defined.

Syntax

type func_name(params);

Example

int is_odd(int);

Note: Formal parameter identifiers are not required in function
declarations.



Declaring a Function

Function declarations allow the compiler to

▶ Check the argument types

▶ Check the return type



Using extern

You can include a function defined in another file using extern.



Using extern

EXAMPLE: extern_func.c



What happens when a function is called?

When a function is called in C, an execution environment is
created.

▶ Memory is assigned on the stack for local variables.

▶ Parameters passed by value are also given memory on the
stack. The original values are not modified in the function.

▶ The function identifier itself has an address that can be used
as a parameter (more on this when we get to pointers).



What happens when a function is called?

When a function returns, control is sent back to the calling
environment.

▶ When in main, the OS is the calling environment.

▶ When in a sub-function, the control returns to the calling
function.



What happens when a function is called?

Consider the following function:

int add(int a, int b) {

return a + b;

}



What happens when a function is called?

int add(int a, int b) {

return a + b;

}

We can call the function in C as follows:

int main() {

int a = 5;

int b = 10;

int c = add(a, b);

}



What happens when a function is called?

When the call to add is made, the values of a and b are copied to
the stack.

int c = add(a, b);

The data contained in the original variables a and b are not
modified.



Function Examples

▶ is_prime.c

▶ stats.c


