
CSE 1310 - Introduction to Computers &
Programming
Introduction to C

Alex Dillhoff

University of Texas at Arlington

What is C?

▶ Developed in the 1970s by Dennis Ritchie at Bell Labs
▶ Designed for efficient translation into hardware instructions

▶ Useful for embedded systems, critical systems, etc.
▶ Not ideal for applications such as web development

▶ C is an Imperative Language
▶ Statements are explicitly written
▶ Contrast with declarative, which declares the overall logic of a system
▶ Example: Haskell

What is C?

C is a compiled language
▶ Compiled

▶ Entire source code translated to machine code
▶ More correspondence with machine language
▶ Example: C, Java

▶ Interpreted
▶ Instructions executed as they are read
▶ Generally slower execution time
▶ Example: Python, JavaScript

Why C?

▶ High level language, but low compared to other high level
languages

▶ Introduces concepts useful for future courses
▶ Memory management
▶ Pointers

The First Program

Write a program that reads two integers from the user, adds them
together, and prints the result.

First, plan your solution using pseudocode!

The First Program

1. Read two integers from the user.

2. Add the integers together.

3. Print the resulting sum to the user.

Does this seem obvious?

The First Program

1. Read two integers from the user.

2. Add the integers together.

3. Print the resulting sum to the user.

Does this seem obvious?

The First Program

If it seems obvious then you are ready to start implementing.

If the solution is not clear, break down the steps further until it is
obvious.

Onto a solution...

The First Program
#include <stdio.h>

int main(void) {

int a = 0;

int b = 0;

// Read values from command line.

scanf("%d", &a);

scanf("%d", &b);

// Add the numbers.

int result = a + b;

// Print the result.

printf("%d + %d = %d\n", a, b, result);

return 0;

}

Preprocessor Directives

#include <stdio.h>

▶ Start with #

▶ Includes code from external files

▶ The compiler injects the code into the program

▶ Standard header files, such as stdio.h, are kept in a special
location

Preprocessor Directives

#define PI 3.14

▶ Defines a constant value named PI with value 3.14
▶ Useful for establishing program-wide standards

▶ Example: #define VERSION 0.8
▶ Prevents us from hard coding values

Comments

// This is a comment.

/* This is also a comment. */

Comments are used to enhance readability and understanding of
code. They are ignored by the compiler.

The main Function

int main(void) {

return 0;

}

▶ main() is a function (think f (x))

▶ All program execution starts with main()
▶ Every C program must include it

▶ Defined by ISO/IEC

The main Function

int main(void) {

return 0;

}

▶ Return type int
▶ Defines what type is returned

▶ return 0;
▶ Must return the type specified by the function
▶ Returns control to the calling function
▶ int main() is a special case – returns control to the OS

Types

In C, each value has a type. The basic data types are

▶ int – Integer values (-2, 0, 5, etc.)

▶ float – Floating point values (-4.3, 0.1, 2.5, etc.)

▶ char – ASCII character values (’a’, ’4’, ’*’, ’?’, etc.)

Variables

float a = 6.2;

▶ Declared with a type and identifier
▶ Type: float
▶ Identifier: a

▶ Defined with a value
▶ Value: 6.2

Variables – Identifiers

▶ Consist of letters, numbers, and underscores

▶ Cannot start with a number
▶ Cannot conflict with reserved words

▶ Words that a part of the language itself
▶ main, int, struct, float

Variables

Valid variables

int myVal = 0;

float float_ = 2.3;

char letter3 = 'a';

Invalid variables

int 1int = 0;

float float = 2.3;

char my-char = 'a';

ASCII Character Set

▶ A character set defines which characters can be used for source
code

▶ Typically, C implementations use ASCII

▶ Possible to use others, but portability suffers

▶ https:

//www.rapidtables.com/code/text/ascii-table.html

https://www.rapidtables.com/code/text/ascii-table.html
https://www.rapidtables.com/code/text/ascii-table.html

Operators

int result = a + b;

▶ Operators perform some basic function, such as addition or
subtraction.

▶ In C, operands should be of the same type.

▶ Operators work with mixed types, but may have unexpected
results (more on this later).

Output

printf("%d + %d = %d\n", a, b, result);

▶ printf is called with 4 arguments
▶ "%d + %d = %d\n"
▶ a
▶ b
▶ result

▶ Control string "%d + %d = %d\n"
▶ Contains instructions which define the output
▶ Embedded conversion specifiers "%d"
▶ Escape character "\n"

▶ Additional parameters
▶ Must correlate to the number of embedded conversion specifiers
▶ Should match the type of the embedded conversion specifiers

Running the Code

▶ C code needs to be compiled, which creates a binary
executable

▶ gcc code.c produces a file named a.out

▶ You can specify the output file name with -o

▶ gcc code.c -o program

Running the Code

In the shell, a program can be run by writing out the path:

▶ ./a.out

▶ ./ - Start in current directory

▶ a.out - Name of the default program

Compilation

▶ Code is translated into a program through compilation
▶ Compilation for C goes through 5 steps

▶ Preprocessing
▶ Translation
▶ Optimization
▶ Assembling
▶ Linking

Preprocessing

▶ Removes any comments from the source file

▶ Expands macros (more on that later)

▶ Expands included header files

▶ Injects definition values

Translating

▶ Translates the output of preprocessing into assembly language
▶ The assembly language is dependent on the platform

▶ Intel
▶ ARM

Translating - Example
In C

int main(void) {

return 0;

}

In ARM Assembly
main:

str fp, [sp, #-4]!

add fp, sp, #0

mov r3, #0

mov r0, r3

add sp, fp, #0

ldr fp, [sp], #4

bx lr

Optimization

▶ Inlining - Removes function call overhead
▶ Loop Unrolling

▶ Removes instructions that control the loop
▶ Removes end of loop tests
▶ Reduces branch penalties
▶ Increases the binary size

Assembling

▶ Converts assembly code in machine code (binary)

▶ This is also known as object code

▶ If multiple files are present, multiple objects are created

Linking

▶ Merges object code from multiple objects

▶ Links library functions
▶ Static linking

▶ Library code is explicitly copied in the result

▶ Dynamic linking
▶ Name of the library is placed in binary and referenced

Input and Output with Variables

▶ Useful to read input from the keyboard or other programs

▶ Output to other programs or the shell also important
▶ Two functions from <stdio.h>

▶ int printf(const char *format, ...);
▶ int scanf(const char *format, ...);

Output with printf()

int printf(const char *format, ...);

▶ The first argument is the control string

▶ Subsequent arguments are values corresponding to format
specifiers

Format Specifiers

▶ %d - Integer

▶ %f - Floating Point

▶ %c - Character

▶ %p - Address

▶ %o - Octal

▶ %x - Hexadecimal

Output – Examples

#include <stdio.h>

int main(void) {

// Declare variable `a`

// and assign a value of 1

int a = 1;

printf("a: %d\n", a);

}

Output: a: 1

Output – Examples

#include <stdio.h>

int main(void) {

// Declare variable `a`

// and assign a value of 1

int a = 1;

printf("a: %d\n", a);

}

Output: a: 1

Output – Examples

#include <stdio.h>

int main(void) {

// Declare variable `a`

// with no assignment

int a;

printf("a: %d\n", a);

}

Output: ?
Local variables that are uninitialized will have an indeterminant
value.

Output – Examples

#include <stdio.h>

int main(void) {

// Declare variable `a`

// with no assignment

int a;

printf("a: %d\n", a);

}

Output: ?
Local variables that are uninitialized will have an indeterminant
value.

Output – Examples

#include <stdio.h>

int main(void) {

float a;

printf("a: %f\n", a);

}

Output: ?

Output – Examples

#include <stdio.h>

int main(void) {

float a;

printf("a: %f\n", a);

}

Output: ?

Output – Examples

#include <stdio.h>

int main(void) {

char a;

printf("a: %c\n", a);

}

Output: ?

Output – Examples

#include <stdio.h>

int main(void) {

char a;

printf("a: %c\n", a);

}

Output: ?

Output – Examples

#include <stdio.h>

int main(void) {

char a;

printf("a: %d\n", a);

}

Output: ?

Output – Examples

#include <stdio.h>

int main(void) {

char a;

printf("a: %d\n", a);

}

Output: ?

Output – Examples

#include <stdio.h>

int main(void) {

int a = 1;

int b = a + 1;

printf("a: %d\n", a);

printf("b: %d\n", b);

}

Output

a: 1

b: 2

Output – Examples

#include <stdio.h>

int main(void) {

int a = 1;

int b = a + 1;

printf("a: %d\n", a);

printf("b: %d\n", b);

}

Output

a: 1

b: 2

Output - Examples

#include <stdio.h>

int main(void) {

int a = 1;

printf("%p\n", &a);

}

Output

0x7ffdb851d7d4

Output - Examples

#include <stdio.h>

int main(void) {

int a = 1;

printf("%p\n", &a);

}

Output

0x7ffdb851d7d4

Output – Examples

Example Scenarios

▶ Using a single format specifier

▶ Using multiple specifiers

▶ Using the incorrect specifier

▶ Additional formatting options

Example code will be posted online

Sub-Specifiers

Additional sub-specifiers can give fine-grained control over output:

- Left-justify within fixed width.
+ Force + before positive value.
Write decimal even if no decimal values are present.
0 Left-pad with zeros instead of spaces for fixed width output.

Sub-Specifiers

Width and precision share similar modifications:

%[number]specifier Minimum number of characters to be
printed.

%*specifier Specify width as an additional argument
(before formatted argument).

%[.number]specifier Different output dependent on specifier.
See documentation.

%.*specifier Precision specified by argument before
formatted argument.

Sub-Specifiers

Example: sub_specifiers.c

Printing to stderr

▶ printf() prints output to stdout

▶ What if we want to print to stderr

▶ Use the function fprintf()

Printing to stderr

int fprintf(FILE *f, const char *s, ...)

▶ stderr, stdout, stdin are files

▶ fprintf(stderr, "Test Error");

▶ fprintf(stdout, "Same as printf");

Input with scanf()

int scanf(const char *format, ...);

▶ Control string accepts multiple specifiers

▶ Return value is the number of values successfully read

Input – Examples

#include <stdio.h>

int main(void) {

int a;

scanf("%d", &a);

printf("%d\n", a);

}

Output

10

10

Input - Examples

Additional Format Options

float f = 1.3;

printf("%.2f\n", f);

Input - Examples

Additional Format Options

float f = 1.3;

printf("%10.2f\n", f);

Input – Examples

Example Scenarios

▶ Reading a single input

▶ Reading multiple input

▶ Adding junk to the control string

▶ Using the incorrect specifier

▶ Checking the return value

Example code will be posted online

Arithmetic Operators

C has several binary arithmetic operators

▶ + addition

▶ − subtraction

▶ ∗ multiplication

▶ / division

▶ % remainder

▶ = assignment

Arithmetic Operators

There are unary operators as well.

▶ − negative

▶ + positive

Arithmetic Operators

Many operators can be used together as long as there exists values
to operate on.

▶ 3 - 2 + 1 / 5 * 6;

▶ float c_squared = a * a + b * b;

▶ float c = a * (a + b) * b;

▶ int negative = -1;

Operators – Examples

▶ Order of operations

▶ Mixing types

▶ Including unary operators

Example code will be posted online

Compound Assignments

Shorthand assignments perform common operations.

▶ +=

▶ -=

▶ /=

▶ *=

▶ %=

Compound Assignments

The following all compute the same thing:

a = a + 1;

a += 1;

a++;

++ and -- are commonly called increment and decrement
assignments, respectively.

Increment and Decrement

A note about increment and decrement: the placement of this
operator affects the result.

int a = 1;

printf("%d\n", --a);

a = 1;

printf("%d\n", a--);

output

0

1

Example – Evaluation Order

What should the output of the following be?

int i = 1;

printf("%d%d%d\n", --i, i--, i);

Output (maybe)

0 1 1

Example – Evaluation Order

What should the output of the following be?

int i = 1;

printf("%d%d%d\n", --i, i--, i);

Output (maybe)

0 1 1

C99 Standard: Evaluation Order

C99 does not specify the order of evaluation. This is determined by
the compiler so that it may optimize.

C99 Standard 6.5.2.2
The order of evaluation of the function designator, the actual
arguments, and subexpressions within the actual arguments is
unspecified, but there is a sequence points before the actual call.

C99 Standard: Evaluation Order

C99 Standard 6.5
Between the previous and next sequence point an object shall have
its stored value modified at most once by the evaluation of an
expression. Furthermore, the prior value shall be read only to
determine the value to be stored.

int i = 1;

printf("%d%d%d\n", --i, i--, i);

In this example there are 3 modifications between the first sequence
point (function call) and the subsequent ;

