
CSE 1310 - Introduction to Computers &
Programming

Data Types & Number Systems

Alex Dillhoff

University of Texas at Arlington



Numbers in Memory

Data is represented in memory dependent on the type. The type
also determines how much memory they require.

There are several types in C:

▶ Scalar

▶ Aggregate

▶ Functions

▶ Union

▶ Struct

▶ Void



Memory and C Programs

When a program is executed, two broad categories of data are
placed in memory:

1. Object code - The instructions which are executed.

2. Variables - The individual data that are processed.



Representing Numbers

The lowest unit of memory is represented as a bit, which can either
be 1 or 0.

The next largest unit of measurement for information is a byte,
which consists of 8 bits.



Representing Numbers

Another unit of measurement for data is a word, which has a size
dependent on a specific architecture.

Commonly, a word is designed to optimize at the hardware level.
The size is usually chosen such that an entire instruction can be
transferred in a single operation.

Sometimes the size represents the largest possible address size.



Representing Numbers

Any number can be conveniently represented as a combination of
the multiples of each of the powers of the base.

Examples in base 10

▶ 212 = 2 ∗ 102 + 1 ∗ 101 + 2 ∗ 100
▶ 1650 = 1 ∗ 103 + 6 ∗ 102 + 5 ∗ 101 + 0 ∗ 100
▶ 6 = 6 ∗ 100
▶ 21 = 2 ∗ 101 + 1 ∗ 100



Representing Binary

Binary numbers can either be 0 or 1 for each power. They can be
represented similarly to the approach taken in the previous slide.

Examples in base 2

▶ 2 = 1 ∗ 21 + 0 ∗ 20
▶ 32 = 1 ∗ 25 + 0 ∗ 24 + 0 ∗ 23 + 0 ∗ 22 + 0 ∗ 21 + 0 ∗ 20
▶ 10 = 1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 0 ∗ 20
▶ 5 = 1 ∗ 22 + 0 ∗ 21 + 1 ∗ 20



Converting from decimal to binary

Base Notation
When representing numbers from multiple systems, it is convenient
to show the base of each number using a subscript.

▶ 12710 = 11111112
▶ 510 = 1012
▶ 25610 = 1000000002
▶ 310 = 112



Representing Hexadecimal

Hexadecimal numbers have digits that can be 0− F, reflecting a
base of 16.

The counting sequence of hexadecimal is 0-9 then A-F.

Examples in base 16

▶ F = 15 ∗ 160
▶ 80 = 8 ∗ 161 + 0 ∗ 160
▶ FF = 15 ∗ 161 + 15 ∗ 160
▶ A0E = 10 ∗ 162 + 0 ∗ 161 + 14 ∗ 160



Converting from decimal to hexadecimal
12810 =?16

Conversion: Divide by the base you are converting to. The
remainder fills up the right-most digit.

128
16 = 8 remainder 0

Take the remaining value, 8, and divide again, placing the
remainder in the next position.

8
16 = 0 remainder 8

Result: 12810 = 8016



Converting from decimal to hexadecimal
12810 =?16

Conversion: Divide by the base you are converting to. The
remainder fills up the right-most digit.

128
16 = 8 remainder 0

Take the remaining value, 8, and divide again, placing the
remainder in the next position.

8
16 = 0 remainder 8

Result: 12810 = 8016



Converting from decimal to hexadecimal
31210 =?16

312
16 = 19 remainder 8

Intermediate Result: 816

19
16 = 1 remainder 3

Intermediate Result: 3816

1
16 = 0 remainder 1

Final Result: 13816



Scalar Types in C

▶ C supports character, integer, and scalar types.

▶ Each type has a minimum size.

▶ Character and integer types can either be signed or unsigned.



Scalar Types in C

Integer types can represent a range of numbers dependent on their
size.

For example, an integer type with a size in m bits can represent a
range of [−2m−1 − 1, 2m−1 − 1] for signed types and [0, 2m − 1] for
unsigned types.



Scalar Types in C

https://en.wikipedia.org/wiki/C_data_types

https://en.wikipedia.org/wiki/C_data_types


Signed versus Unsigned Types

An int is a signed type, meaning it can represent both positive
and negative numbers.

The minimum bit size of an int is 16 bits.



Signed Types

The left-most bit in a signed type is called the sign bit.

A 1 signifies a negative value, and a 0 is a positive value.

Examples

▶ 01112 = 710
▶ 11112 = −710 (or is it?)



Signed Types

When representing a negative number, the left-most bit is reserved
as the sign bit.

If this bit is 1, then the number is negative.



Signed Types

Most platforms use a representation called two’s complement.

Let’s first look at one’s complement.



One’s Complement

Most platforms use a representation called two’s complement.

Let’s first look at one’s complement using a 4-bit number.



One’s Complement

Value Binary Negative
0 0000 1111
1 0001 1110
2 0010 1101
3 0011 1100
4 0100 1011
5 0101 1010
6 0110 1001
7 0111 1000



One’s Complement

If the left-most bit is used as the sign bit, then 0111 = 7.

What happens if we add a single bit?



One’s Complement

1111 = ?



One’s Complement

1111 = -0



One’s Complement

One’s complement is not ideal for basic arithmetic operations.

Consider 3 + (-2) by evaluating it in binary.



One’s Complement

0011 3
+ 1101 −2



One’s Complement

0011 3
+ 1101 −2

0000 0



One’s Complement

0011 3
+ 1101 −2

0000 0

We have enough bits to represent the number 1... what
happened?



Two’s Complement

Two’s complement addresses this shortcoming.

It was designed to work naturally with binary arithmetic operations.



Two’s Complement
The only difference between one’s complement and two’s
complement is that you add 1 after negating the bits.

Value Binary Negative
0 0000 0000
1 0001 1111
2 0010 1110
3 0011 1101
4 0100 1100
5 0101 1011
6 0110 1010
7 0111 1001



Two’s Complement

Consider 3 + (-2) with two's complement.



Two’s Complement

0011 3
+ 1110 −2



One’s Complement

0011 3
+ 1110 −2

0001 1



Example: to bit string.c
Example: rollover.c
Example: sizeof.c



Type Conversions

There are two approaches to converting a value from one type to
another:

1. Automatic Type Conversion

2. Forced Type Conversion



Automatic Type Conversion

▶ Every expression has an associated type.

▶ Expressions resulting from logical or relational operators have
type int.

▶ All values of char or short are promoted to int before
processing.



Dominating Types

Automatic conversions involving mixed types acted upon by a
binary operation generally follow the following prioritization:

1. long double

2. double

3. float

4. unsigned long

5. long

6. unsigned

7. int



Automatic Type Conversions

Further reading: Chapter 3.10

Example: auto convert.c



Forced Type Conversions

Individual expressions and values can be cast to a different type
using the following syntax:
Syntax

(type) var;

Example

float a = 3.1;

printf("a as an int is %d\n", (int) a);


