CSE 1310 - Introduction to Computers & Programming Data Types & Number Systems

Alex Dillhoff

University of Texas at Arlington

Numbers in Memory

Data is represented in memory dependent on the **type**. The **type** also determines how much memory they require.

There are several types in C:

- Scalar
- Aggregate
- Functions
- Union
- Struct

Memory and C Programs

When a program is executed, two broad categories of data are placed in memory:

- 1. **Object code** The instructions which are executed.
- 2. Variables The individual data that are processed.

The lowest unit of memory is represented as a **bit**, which can either be 1 or 0.

The next largest unit of measurement for information is a **byte**, which consists of 8 bits.

Another unit of measurement for data is a **word**, which has a size dependent on a specific architecture.

Commonly, a **word** is designed to optimize at the hardware level. The size is usually chosen such that an entire instruction can be transferred in a single operation.

Sometimes the size represents the largest possible address size.

Representing Numbers

Any number can be conveniently represented as a combination of the multiples of each of the powers of the base.

Examples in base 10

$$\blacktriangleright 212 = 2 * 10^2 + 1 * 10^1 + 2 * 10^0$$

$$\blacktriangleright 1650 = 1 * 10^3 + 6 * 10^2 + 5 * 10^1 + 0 * 10^0$$

▶ $6 = 6 * 10^{0}$

$$\blacktriangleright 21 = 2 * 10^1 + 1 * 10^0$$

Binary numbers can either be 0 or 1 for each power. They can be represented similarly to the approach taken in the previous slide.

Examples in base 2

$$\begin{array}{l} \blacktriangleright & 2 = 1 * 2^{1} + 0 * 2^{0} \\ \blacktriangleright & 32 = 1 * 2^{5} + 0 * 2^{4} + 0 * 2^{3} + 0 * 2^{2} + 0 * 2^{1} + 0 * 2^{0} \\ \blacktriangleright & 10 = 1 * 2^{3} + 0 * 2^{2} + 1 * 2^{1} + 0 * 2^{0} \\ \blacktriangleright & 5 = 1 * 2^{2} + 0 * 2^{1} + 1 * 2^{0} \end{array}$$

Converting from decimal to binary

Base Notation

When representing numbers from multiple systems, it is convenient to show the base of each number using a subscript.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

$$\blacktriangleright$$
 127₁₀ = 1111111₂

▶
$$5_{10} = 101_2$$

 \blacktriangleright 256₁₀ = 10000000₂

►
$$3_{10} = 11_2$$

Representing Hexadecimal

Hexadecimal numbers have digits that can be 0 - F, reflecting a base of 16.

The counting sequence of hexadecimal is 0-9 then A-F.

Examples in base 16

Converting from decimal to hexadecimal 128₁₀ =?₁₆

Conversion: Divide by the base you are converting to. The remainder fills up the right-most digit.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 $\frac{128}{16} = 8$ remainder 0

Converting from decimal to hexadecimal 128₁₀ =?₁₆

Conversion: Divide by the base you are converting to. The remainder fills up the right-most digit.

$$\frac{128}{16} = 8 \text{ remainder } 0$$

Take the remaining value, 8, and divide again, placing the remainder in the next position.

$$\frac{8}{16} = 0$$
 remainder 8

Result: $128_{10} = 80_{16}$

Converting from decimal to hexadecimal $312_{10} = ?_{16}$

 $\frac{312}{16} = 19$ remainder 8

Intermediate Result: 816

 $\frac{19}{16} = 1$ remainder 3

Intermediate Result: 38₁₆

 $\frac{1}{16}=0$ remainder 1

Final Result: 138₁₆

Scalar Types in C

- ► C supports character, integer, and scalar types.
- Each type has a **minimum size**.
- Character and integer types can either be signed or unsigned.

Integer types can represent a range of numbers dependent on their size.

For example, an integer type with a size in m bits can represent a range of $[-2^{m-1}-1, 2^{m-1}-1]$ for **signed** types and $[0, 2^m - 1]$ for **unsigned** types.

https://en.wikipedia.org/wiki/C_data_types

Signed versus Unsigned Types

An int is a **signed** type, meaning it can represent both positive and negative numbers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

The minimum bit size of an int is 16 bits.

The left-most bit in a signed type is called the sign bit.

A 1 signifies a negative value, and a 0 is a positive value.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Examples

$$\blacktriangleright$$
 0111₂ = 7₁₀

▶ $1111_2 = -7_{10}$ (or is it?)

When representing a negative number, the left-most bit is reserved as the **sign bit**.

If this bit is 1, then the number is negative.

Most platforms use a representation called two's complement.

Let's first look at one's complement.

Most platforms use a representation called two's complement.

Let's first look at **one's complement** using a 4-bit number.

Value	Binary	Negative
0	0000	1111
1	0001	1110
2	0010	1101
3	0011	1100
4	0100	1011
5	0101	1010
6	0110	1001
7	0111	1000

If the left-most bit is used as the sign bit, then 0111 = 7.

What happens if we add a single bit?

1111 = ?

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

1111 = -0

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

One's complement is not ideal for basic arithmetic operations.

Consider 3 + (-2) by evaluating it in binary.

$\begin{array}{rrr} 0011 & 3 \\ + & 1101 & -2 \end{array}$

・ロト・「「「・」」・ 「」・ 「」・ (「」・

◆□ > ◆□ > ◆ □ > ● □ >

$$\begin{array}{rrrr} & 0011 & 3 \\ + & 1101 & -2 \\ \hline & 0000 & 0 \end{array}$$

We have enough bits to represent the number 1... what happened?

・ロト・「「「・」」・ 「」・ 「」・ (「」・

Two's complement addresses this shortcoming.

It was designed to work naturally with binary arithmetic operations.

Two's Complement

The only difference between one's complement and two's complement is that you add 1 after negating the bits.

Value	Binary	Negative
0	0000	0000
1	0001	1111
2	0010	1110
3	0011	1101
4	0100	1100
5	0101	1011
6	0110	1010
7	0111	1001

Two's Complement

Consider 3 + (-2) with two's complement.

Two's Complement

$$\begin{array}{rrr} 0011 & 3 \\ + & 1110 & -2 \end{array}$$

・ロット (四)・ (目)・ (日)・ (日)

◆□◆ ▲□◆ ▲目◆ ▲目◆ ▲□◆

Example: to_bit_string.c Example: rollover.c Example: sizeof.c

There are two approaches to converting a value from one type to another:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- 1. Automatic Type Conversion
- 2. Forced Type Conversion

Automatic Type Conversion

- Every expression has an associated type.
- Expressions resulting from logical or relational operators have type int.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

All values of char or short are promoted to int before processing.

Dominating Types

Automatic conversions involving mixed types acted upon by a binary operation generally follow the following prioritization:

- 1. long double
- 2. double
- 3. float
- 4. unsigned long
- 5. long
- 6. unsigned
- 7. int

Automatic Type Conversions

Further reading: Chapter 3.10

Example: auto_convert.c

Forced Type Conversions

Individual expressions and values can be cast to a different type using the following syntax: Syntax

(type) var;

Example

float a = 3.1;
printf("a as an int is %d\n", (int) a);