
CSE 1320 - Intermediate Programming

Binary Trees

Alex Dillhoff

University of Texas at Arlington

1



Binary Trees

Binary trees are a graph-based data structure.

They are defined as a hierarchical tree of nodes in which each node

has at most two sub-nodes.

2



Binary Trees

3



Binary Trees

Tree-based data structures share a few common properties and

definitions:

� The size of a tree T is determined by the total number of

nodes in T .

� The root of a tree T is the starting point of T .

� A leaf node in a tree T is a node that has no sub-nodes.

� The height of a tree T is determined by the length of the

shortest path between the root of T and the lowest leaf node

of T .
4



Binary Trees

Each node in a binary tree contains the following information:

� A reference to the left sub-node.

� A reference to the right sub-node.

� A key representing some value.

5



Binary Trees

Binary trees are especially useful for sorting and searching data

efficiently.

The data can be as simple as a single scalar value or as complex as

a multi-membered struct as long as a suitable key can be chosen

to represent each node.

6



Constructing a Binary Tree

In general, a binary tree can be constructed in any fashion as long

as each node has at most two sub-nodes.

Although the usefulness of a binary tree comes from utilizing their

hierarchical nature, there is no requirement that the data need to

be sorted in any particular way.

7



Binary Search Trees

To take advantage of the benefits of efficient sorting and searching,

a Binary Search Tree must be used.

A Binary Search Tree is defined by the following property:

If x is a node in a binary search tree and y is a sub-node of x , then

y is a left sub-node if y .key ≤ x .key and y is a right sub-node if

y .key ≥ x .key .

8



Operations

There are several operations that can be performed on a Binary

Search Tree.

1. Traversal

2. Search

3. Insertion

4. Deletion

9



Operations - Traversal

Given a binary tree T , there are several different ways to traverse

the nodes of T .

1. Depth First Search (Preorder)

2. Depth First Search (Inorder)

3. Depth First Search (Postorder)

4. Breadth First Search

10



Depth First Search (Preorder)

To perform a preorder DFS, the key of the current node is printed

before moving to the sub-nodes.

void preorder_dfs(Node* n) {

if (n != NULL) {

printf("%d\n", n->key);

preorder_dfs(n->left);

preorder_dfs(n->right);

}

}

11



Depth First Search (Inorder)

To perform a inorder DFS, the key of the current node is printed

between the sub-nodes.

void inorder_dfs(Node* n) {

if (n != NULL) {

inorder_dfs(n->left);

printf("%d\n", n->key);

inorder_dfs(n->right);

}

}

12



Depth First Search (Inorder)

For a Binary Search Tree, an inorder traversal will print the items

out in order from least to greatest, according to they key.

13



Depth First Search (Postorder)

To perform a postorder DFS, the key of the current node is printed

after moving to the sub-nodes.

void postorder_dfs(Node* n) {

if (n != NULL) {

postorder_dfs(n->left);

postorder_dfs(n->right);

printf("%d\n", n->key);

}

}

14



Breadth First Search

A Breadth First Search prints each level of the tree in order from

top to bottom, left to right.

In this way, the breadth of the layer is explored before moving to

the next level in the height of the tree.

15



Operations - Search

Searching a Binary Search Tree involves looking at each node,

starting with the root, until the desired key is found.

If the target value is less than the key , the left sub-node is

traversed. Otherwise, the right sub-node is traversed.

This continues until a leaf node is reached.

16



Operations - Search

Example: Search through a BST

17



Operations - Insertion

Besides searching, inserting a node into a Binary Search Tree is one

of the greatest benefits of using them.

A new node is inserted depending on its key relative to the tree T .

18



Operations - Insertion

Example: Insert new item into BST.

19



Operations - Insertion

The insert operation is easy to implement and comes with the

benefit that the tree T retains the property of a Binary Search Tree

after the item is inserted.

Deleting a node is more complicated and may require

reorganization of the tree.

20



Operations - Deletion

If the node is a leaf, the node can simply be set to NULL.

If the node has a single subnode, the subnode is then assigned to

the parent of the current node.

If the node has two subnodes, the graph must be restructured

depending on the data.

21


