
CSE 1320 - Intermediate Programming
Dynamic Memory Allocation

Alex Dillhoff

University of Texas at Arlington

1



Dynamic Memory Allocation

C gives the programmer the tools to allocate memory dynamically through
several functions in stdlib.h.

Dynamic memory allocation is a powerful tool which allows our programs
to adapt to varying inputs, but it comes with increased development
overhead.

2



Dynamic Memory Allocation

Functions related to dynamic memory allocation:

• malloc
• calloc
• realloc
• free

3



malloc

void * malloc(size_t size);

Allocates size bytes and returns a pointer to the allocated memory. This
memory is not initialized.

If the system cannot allocate memory, NULL is returned.

4



calloc

void * calloc(size_t nmemb, size_t size);

Allocates memory for an array of nmemb elements of size bytes each and
returns a pointer to the memory.

5



calloc

calloc() also zero-initializes the memory reserved.

6



realloc

void * realloc(void *ptr, size_t size);

Changes the size of the memory block points to by ptr to size bytes. If
ptr is NULL, then the call is equivalent to malloc.

If the new size is bigger than the previous size, the new data is not
initialized.

7



free

void free(void *ptr);

Frees the memory space pointed to by ptr, which must have been
returned by a previous call to malloc, calloc, or realloc.

8



Heap vs. Stack

So far, we have created variable that have a fixed size of data.

The memory for these variables exists on the stack and is allocated and
deallocated by compiler instructions.

9



Heap vs. Stack

The stack has several important properties.

• Linear data structure
• High-speed access
• Memory is not fragmented
• Memory cannot be resized

10



Heap vs. Stack

The heap differs from the stack in the following ways.

• Memory is resizable using realloc
• Memory can be fragmented
• Developer is responsible for managing memory

11



Void Pointer

Memory allocation functions like malloc return void *.

This allows the returned block of memory to be reallocated to match the
desired type.

12



Dynamic Memory Allocation

Examples

• Allocate scalar values
• Allocate 1D array
• Allocate 2D array of pointers
• 2D array as 1D memory space

13



Pointers and Storage

It is possible to assign a pointer to another pointer, but remember that
both pointers will then refer to the same location in memory.

This could cause unintended side effects in your program.

14



Pointers and Storage

Example: strcpy versus assignment

15



Dynamic Memory and Files

Dynamic memory allocation allows the developer to work with unknown
file sizes and structures.

For example, when loading raw flight data, we do not know at compile time
how many entries are in the file to be loaded. Dynamic memory allocation
allows our programs to adapt to these conditions.

16



Dynamic Memory and Files

Example: Loading flight data

17



Valgrind

Valgrind is a debugging and profiling tool for C and C++ programs.

One of the components, memcheck, is particularly useful for debugging
memory leaks.

18



Preparing Your Program for Valgrind

When using Valgrind, it is recommended to compile your program with the
following flags:

• -g - includes debugging information so Valgrind can report exact
lines.

• -O0 - removes optimization to improve the Valgrind’s accuracy in
reporting.

19



Using Valgrind

If your program runs like this:

program arg1

You run it using Valgrind like this:

valgrind --leak-check=yes program arg1

20



Using Valgrind

Example: Using Valgrind to detect errors.

21


