
CSE 1320 - Intermediate
Programming

File I/O

Alex Dillhoff

University of Texas at Arlington



File Input/Output

File input and output is not part of the C language
itself. The concept of files are implemented by the
Operating System.

C library functions use system calls to facilitate
processing data with files.



A Note on Buffers

In C, input is usually kept in a buffer until the user
presses <Enter>.

Output is kept in the buffer until one of a number
of events occurs.



Output Buffer

The output buffer can be flushed following 5
different events:

1. A newline character is placed in the buffer.

2. The buffer becomes full.

3. The system prepares for input.

4. The program terminates.

5. All input is read and new input must be read.



Common Issue: No Output

Since a newline character triggers a flush to
stdout, output may not show up in the order that
the programmer expects it.

To ensure that the output appears in the order it is
placed in the code, make sure to end the output
string with a newline character.



Files in C

A file is represented as a stream of bytes in C.

It is up to the programmer to put any sort of rules
and organization on how the data in each file is
represented (e.g. CSV, JSON, etc.).



Files in C

There are three files that have already been used so
far in this course:

1. stdin

2. stdout

3. stderr

Each of these files have type FILE *. When a C
program is executed, these 3 files are opened for use.



Files in C

The type FILE refers to a structure in C that stores
information about the file.

We will cover structures later in this course.



Opening a File

Files are opened in C through the use of fopen,
which is included in stdio.h.

Example: Open a text file for reading

FILE *f = fopen("data.txt", "r");



Opening a File

The return type of fopen is FILE *.

The first argument is a C string representing the
name of the file to open.

The second argument is a C string indicating how
the file should be opened. Depending on this second
argument, a new file will be created.



Opening A File

I "r" - Open a file for reading.

I "w" - Open a new file for writing.

I "a" - Open a file for appending.

I "r+" - Open an existing file for update
(reading and writing).

I "w+" - Open a new file for update.

I "a+" - Open a (new or existing) file for reading
and appending.



Closing a File

Closing a file after reading/writing operations are
complete is important to sever the reference
between your program and the file itself.

It also provides a way to check for any errors that
may have occurred with the file.



Closing a File

To close a file in C, use the fclose function.

fclose(f);



File I/O

Example: Open and close a file in C
(file_basics.c).



File I/O

Example: Error checking for File I/O
(file_error.c).



Reading and Writing Characters

The functions getchar() and putchar() were
previously used to read a character from stdin and
print a character to stdout, respectively.

These functions use getc and putc.



Reading and Writing Characters

getc and putc take a FILE * as input to place and
read a character, respectively.

// Place a character

putc('a', fp);

// Read a character

char a = getc(fp);



Reading and Writing Characters

Example: Read all characters from a file
(read_chars.c).



Reading and Writing Characters

Example: Write a line of characters to a file
(write_chars.c).



Reading and Writing Characters

Example: Copy a file (copy_file.c).



ungetc()

C provides a library utility ungetc which moves a
character from a FILE * back to stdin.

It can push back at most 1 character. Behavior
when pushing more than 1 is not guaranteed.



ungetc()

Example: Skip whitespace
(skip_whitespace.c).



Reading and Writing Lines

Previously, fgets was used to read string input
from stdin.

This function can be used to read lines from ANY
FILE *.



Reading and Writing Lines

Example: Count lines (count_lines.c).



Reading and Writing Lines

Example: Read CSV data (read_csv_file.c).



Reading and Writing Lines

It is just as useful to write strings to a file. This is
accomplished with fputs.

int fputs(const char *s, FILE *stream);



Reading and Writing Lines

Example: Write CSV data
(write_csv_file.c).



More Examples

Example: File I/O w/Command Line Input
(cl_file_io.c).



Formatted I/O

Besides reading individual characters and strings, it
is possible to read and write formatted input and
output.

This is beneficial if specific types are required based
on the file contents.



Formatted I/O

Formatting input and output should already be very
familiar with printf() and scanf().

These functions are actually specific versions of
more generalized functions that can be used with
any FILE *.



Formatted Output

The function fprintf() allows the programmer to
print a formatted string to the desired FILE *.

int fprintf(FILE *stream, const char *format, ...);



Formatted Output

Example: Print formatted string to file.



Formatted Output

This gives us an easier way to write CSV directly to
the file.

Example: Print CSV to file.



Formatted Input

Similar to fprintf(), fscanf() affords the
developer some convenience, especially when
dealing with specific data structures.

int fscanf(FILE *stream, const char *format, ...);



Formatted Input

Example: Read formatted input from file.



Reading Blocks of Data

A third way of reading and writing data is to
perform the operations based on the number of
bytes.

This is useful when reading file formats that are well
defined and can be interpreted as structs.



Reading Blocks of Data

The C standard library offers the fread() function.
size_t fread(void *ptr, size_t size,

size_t nmemb, FILE *stream);

I ptr is the pointer to read to.

I size is the size of the type being read.

I nmemb is the number of instances of the above
type to read.

I stream is the pointer to the file.



Reading Blocks of Data

Example: Read n bytes.



Reading Blocks of Data

When manipulating data of a particular file format,
it is often useful to represent the structure of the
file using a struct.

This allows us to read specific blocks of data
directly to the structs using fread().



Reading Blocks of Data

Example: Reading the JFIF Header



Writing Blocks of Data

Similar to reading blocks of data with fread(), we
can write blocks of data using fwrite().

size_t fwrite(const void *ptr, size_t size,

size_t nmemb, FILE *stream);



Writing Blocks of Data

Example: Writing n bytes.



The return value

Both fread() and fwrite() return a value of
size_t indicating the number of bytes transferred
only when nmemb is 1.



Writing Blocks of Data

Example: Writing a JFIF Header.



Sequential versus Random File Access

Until now, we have discussed file operations that
perform access linearly.

When reading, the pointer starts at the beginning
and continues until the file is closed or complete.

When writing, the pointer either starts at the
beginning or the end.



Sequential versus Random File Access

It is useful to relocate the file pointer to specific
parts of the file for data access.

This operation is available in C through the
fseek() and ftell() functions.



fseek()

The function fseek() moves the file pointer to a
desired byte position.

int fseek(FILE *stream, long offset, int whence);

Given a starting position (from whence it came)
and an offset, fseek() moves the current file
pointer by offset.

The function returns the current pointer offset.



fseek()

Note that whence is not any desired position. It
refers to one of the following constants:

I SEEK_SET - offset relative to the start of the
file.

I SEEK_CUR - offset relative to the current
position.

I SEEK_END - offset relative to the end of the file.



ftell()

At any given time, it is useful to know where the
current file position is.

This is accessible through ftell().



ftell()

long ftell(FILE *stream);

Obtains the current value of the file position
indicator for the stream pointed to by stream.



Examples

I Example 1: Count the number of actions
logged.

I Example 2: Read JPEG image
information.


