
CSE 1320 - Intermediate
Programming

Loops

Alex Dillhoff

University of Texas at Arlington



Loops

Loops allow us to express multiple iterations of
statements compactly.

We will cover:
I Loop statements

I while
I do-while
I for

I Exiting gracefully



while Loops

Syntax

while (EXPRESSION)

STATEMENTS

Simple Example

int count = 0;

while (1) {

printf("%d\n", count++;);

}



while Loops

I EXPRESSION evaluated at the top of the loop.

I Statements in loop are executed.

I Once the bottom is reached, return to the top.

I Control the loop through the EXPRESSION.



while Loops

/* Count to 10 */

int count = 0;

while (count < 10) {

printf("%d\n", count++);

}

Does this program do what was intended?

Answer: No! It only counts to 9.



while Loops

/* Count to 10 */

int count = 0;

while (count < 10) {

printf("%d\n", count++);

}

Does this program do what was intended?
Answer: No! It only counts to 9.



while Loops

Let’s modify this slightly.

/* Count to 10 */

int count = 0;

while (count <= 10) {

printf("%d\n", count++);

}

Does this program do what was intended?

Answer: Yes! It now includes 10.



while Loops

Let’s modify this slightly.

/* Count to 10 */

int count = 0;

while (count <= 10) {

printf("%d\n", count++);

}

Does this program do what was intended?
Answer: Yes! It now includes 10.



while Loops

Example: Is Prime? (is_prime.c)



while Loops

Example: Guessing Game (guess.c)



while Loops

Example: System Menu (menu.c)



for Loops

for loops provide a convenient syntax for looping a
specified number of times.

Syntax

for (INIT.; CONDITION; PROCESSING)

STATEMENTS

Simple Example

/* Count to 10 */

for (int i = 0; i < 10; i++) {

printf("%d\n", i);

}



for Loops

I Initialization - Allows us to create the loop
counting variable.

I Condition - Set the test condition for which
the loop should continue or stop.

I Processing - Defines what should happen
after each iteration of the loop.



for Loops

Example: Multiples of 3 and 5 (multiple.c)



do-while Loops

do-while loops guarantee a single iteration of the
loop.

Syntax

do

STATEMENTS

while (CONDITION)



do-while Loops

Example: Guessing Game Again (guess2.c)



Infinite Loops

Infinite loops are most common with while loops.

I Make sure the condition can be broken.

I Remember to update your loop counter (if
applicable).

I Use control statements.



Infinite Loops

With a while loop:

while (1);



Infinite Loops

With a for loop:

for (;;);



Nested Loops

I Any amount of loops can be nested.

I Increases the computation time.

I Useful for having an outer control loop to keep
the user in a program.



Nested Loops

EXAMPLE: Prime Factorization
(prime_factor.c)



Additional Control

Additional control is available with loops through
the following statements.

I break;

I continue;

I return;

I exit();



Additional Control – break

The break statement immediately exits a loop.

If the loop is the inner loop of a nested loop, it will
return control to the outer loop.



Additional Control – break

while (!found) {

// Break if target found

if (input == target) {

break;

}

input++;

}



Adding Control – continue

The continue statement skips to the bottom of
the loop.

This is commonly used to skip unnecessary
calculations depending on the data.



Adding Control – continue

// Don't divide by anything

// that is divisible by 11

for (int i = 0; i < n; i++) {

if (i % 11 == 0)

continue;

input /= i;

}



Adding Control – return

The return statement immediately exits the
current function.

If executed in main, the program exits.



Adding Control – exit

The exit() function will immediately exit the
program, regardless of where it is executed.

There is typically always a better way to exit the
functions and program without it.



Adding Control – exit

int main() {

for (int i = 0; i < 10; ++i) {

if (i == 5) {

exit();

}

}

return 0;

}


