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Macros

C supports more complicated definitions using #define in the
form of functions.

These can be called just like functions, but are processed like
a preprocessor directive.
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Macros

Since macros are created using #define, every occurrence of
the macro in code is replaced with the definition during
compilation.
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Macros

The macro code is expanded at each location that it is
referenced during the preprocessing phase of compilation.

This provides a performance benefit over a traditional
function, which must transfer control to a different part of the
object code when called.
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Macros

A subtle tradeoff is that macros expand the size of the code.

Excessive usage can create binaries that are bloated
compared to using functions.
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Macros - Example

A commonly used case is to create min and max macros to
produce the minimum or maximum of two values.

#define MIN(a, b) (a < b) ? a : b
#define MAX(a, b) (a > b) ? a : b
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Macros - CAUTION

Be careful when writing functional macros as parameters will
expand exactly as you define it.

Example: abs.c
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Macros - CAUTION

In the previous example, the certain ways of writing the
absolute value macro would produce erroneous output.
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Macros - CAUTION

Consider the following macro:

#define ABS(x) x < 0 ? -x : x

If the input is something like 5 - 10, the resulting expansion
will be:

ABS(5 - 10) 5 - 10 < 0 ? -5 - 10 : 5 - 10
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Macros - CAUTION

This evaluates to

-5 < 0 ? -15 : -5

The resulting output is then −15.
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Macros - CAUTION

What’s the right way to create such a macro?

int ABS_x;
#define ABS(x) (ABS_x = x, ABS_x < 0 ? -ABS_x : ABS_x)

Although int ABS_x; is declared globally, it is not used in the
main program.
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Conditional Directives

Conditional directives have already been used when creating
a header guard, but there are a few more worth noting:

• #if
• #ifdef
• #elif
• #else
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Conditional Directives

We can combine these with macros to add debugging or
logging statements in our code that only execute under
certain builds.
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Conditional Directives

For example, we may want leave certain debug statements in
the code, but only use them if we build the debugging version
of our code.
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Conditional Directives

Example: debug_macro.c
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Conditional Directives

The previous example will only execute the statements if the
DEBUG macro is defined.

We can pass macros and define them as part of the
compilation command.

gcc -DDEBUG debug_macro.c
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