
CSE 1320 - Intermediate Programming
Macros

Alex Dillhoff

University of Texas at Arlington

1



Macros

C supports more complicated definitions using #define in the
form of functions.

These can be called just like functions, but are processed like
a preprocessor directive.

2



Macros

Since macros are created using #define, every occurrence of
the macro in code is replaced with the definition during
compilation.

3



Macros

The macro code is expanded at each location that it is
referenced during the preprocessing phase of compilation.

This provides a performance benefit over a traditional
function, which must transfer control to a different part of the
object code when called.

4



Macros

A subtle tradeoff is that macros expand the size of the code.

Excessive usage can create binaries that are bloated
compared to using functions.

5



Macros - Example

A commonly used case is to create min and max macros to
produce the minimum or maximum of two values.

#define MIN(a, b) (a < b) ? a : b
#define MAX(a, b) (a > b) ? a : b

6



Macros - CAUTION

Be careful when writing functional macros as parameters will
expand exactly as you define it.

Example: abs.c

7



Macros - CAUTION

In the previous example, the certain ways of writing the
absolute value macro would produce erroneous output.

8



Macros - CAUTION

Consider the following macro:

#define ABS(x) x < 0 ? -x : x

If the input is something like 5 - 10, the resulting expansion
will be:

ABS(5 - 10) 5 - 10 < 0 ? -5 - 10 : 5 - 10

9



Macros - CAUTION

This evaluates to

-5 < 0 ? -15 : -5

The resulting output is then −15.

10



Macros - CAUTION

What’s the right way to create such a macro?

int ABS_x;
#define ABS(x) (ABS_x = x, ABS_x < 0 ? -ABS_x : ABS_x)

Although int ABS_x; is declared globally, it is not used in the
main program.

11



Conditional Directives

Conditional directives have already been used when creating
a header guard, but there are a few more worth noting:

• #if
• #ifdef
• #elif
• #else

12



Conditional Directives

We can combine these with macros to add debugging or
logging statements in our code that only execute under
certain builds.

13



Conditional Directives

For example, we may want leave certain debug statements in
the code, but only use them if we build the debugging version
of our code.

14



Conditional Directives

Example: debug_macro.c

15



Conditional Directives

The previous example will only execute the statements if the
DEBUG macro is defined.

We can pass macros and define them as part of the
compilation command.

gcc -DDEBUG debug_macro.c

16


