
CSE 1320 - Intermediate Programming

Data Types & Number Systems

Alex Dillhoff

University of Texas at Arlington

1



Numbers in Memory

Data is represented in memory dependent on the type. The type also

determines how much memory they require.

There are several types in C:

� Scalar

� Aggregate

� Functions

� Union

� Struct

� Void

2



Memory and C Programs

When a program is executed, two broad categories of data are placed in memory:

1. Object code - The instructions which are executed.

2. Variables - The individual data that are processed.

3



Representing Numbers

The lowest unit of memory is represented as a bit, which can either be 1 or 0.

The next largest unit of measurement for information is a byte, which consists of

8 bits.

4



Representing Numbers

Another unit of measurement for data is a word, which has a size dependent on

a specific architecture.

Commonly, a word is designed to optimize at the hardware level. The size is

usually chosen such that an entire instruction can be transferred in a single

operation.

Sometimes the size represents the largest possible address size.

5



Representing Numbers

Any number can be conveniently represented as a combination of the multiples of

each of the powers of the base.

Examples in base 10

� 212 = 2 ∗ 102 + 1 ∗ 101 + 2 ∗ 100

� 1650 = 1 ∗ 103 + 6 ∗ 102 + 5 ∗ 101 + 0 ∗ 100

� 6 = 6 ∗ 100

� 21 = 2 ∗ 101 + 1 ∗ 100

6



Representing Binary

Binary numbers can either be 0 or 1 for each power. They can be represented

similarly to the approach taken in the previous slide.

Examples in base 2

� 2 = 1 ∗ 21 + 0 ∗ 20

� 32 = 1 ∗ 25 + 0 ∗ 24 + 0 ∗ 23 + 0 ∗ 22 + 0 ∗ 21 + 0 ∗ 20

� 10 = 1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 0 ∗ 20

� 5 = 1 ∗ 22 + 0 ∗ 21 + 1 ∗ 20

7



Converting from decimal to binary

Base Notation

When representing numbers from multiple systems, it is convenient to show the

base of each number using a subscript.

� 12710 = 11111112

� 510 = 1012

� 25610 = 1000000002

� 310 = 112

8



Representing Hexadecimal

Hexadecimal numbers have digits that can be 0− F, reflecting a base of 16.

The counting sequence of hexadecimal is 0-9 then A-F.

Examples in base 16

� F = 15 ∗ 160

� 80 = 8 ∗ 161 + 0 ∗ 160

� FF = 15 ∗ 161 + 15 ∗ 160

� A0E = 10 ∗ 162 + 0 ∗ 161 + 14 ∗ 160

9



Converting from decimal to hexadecimal

12810 =?16

Conversion: Divide by the base you are converting to. The remainder fills up

the right-most digit.

128
16

= 8 remainder 0

Take the remaining value, 8, and divide again, placing the remainder in the next

position.

8
16

= 0 remainder 8

Result: 12810 = 8016

10



Converting from decimal to hexadecimal

12810 =?16

Conversion: Divide by the base you are converting to. The remainder fills up

the right-most digit.

128
16

= 8 remainder 0

Take the remaining value, 8, and divide again, placing the remainder in the next

position.

8
16

= 0 remainder 8

Result: 12810 = 8016
10



Converting from decimal to hexadecimal

31210 =?16

312
16

= 19 remainder 8

Intermediate Result: 816

19
16

= 1 remainder 3

Intermediate Result: 3816

1
16

= 0 remainder 1

Final Result: 13816

11



Scalar Types in C

� C supports character, integer, and scalar types.

� Each type has a minimum size.

� Character and integer types can either be signed or unsigned.

12



Scalar Types in C

Integer types can represent a range of numbers dependent on their size.

For example, an integer type with a size in m bits can represent a range of

[−2m−1 − 1, 2m−1 − 1] for signed types and [0, 2m − 1] for unsigned types.

13



Scalar Types in C

https://en.wikipedia.org/wiki/C_data_types

14

https://en.wikipedia.org/wiki/C_data_types


Signed versus Unsigned Types

An int is a signed type, meaning it can represent both positive and negative

numbers.

The minimum bit size of an int is 16 bits.

15



Signed Types

The left-most bit in a signed type is called the sign bit.

A 1 signifies a negative value, and a 0 is a positive value.

Examples

� 01112 = 710

� 11112 = −710

16



Example: rollover.c

Example: sizeof.c

17



Type Conversions

There are two approaches to converting a value from one type to another:

1. Automatic Type Conversion

2. Forced Type Conversion

18



Automatic Type Conversion

� Every expression has an associated type.

� Expressions resulting from logical or relational operators have type int.

� All values of char or short are promoted to int before processing.

19



Dominating Types

Automatic conversions involving mixed types acted upon by a binary operation

generally follow the following prioritization:

1. long double

2. double

3. float

4. unsigned long

5. long

6. unsigned

7. int

20



Automatic Type Conversions

Further reading: Chapter 3.10

Example: auto convert.c

21



Forced Type Conversions

Individual expressions and values can be cast to a different type using the

following syntax:

Syntax

(type) var;

Example

float a = 3.1;

printf("a as an int is %d\n", (int) a);

22


