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Numbers in Memory

Data is represented in memory dependent on the type. The type also
determines how much memory they require.

There are several types in C:

e Scalar
o Aggregate

Functions

e Union
Struct
e Void



Memory and C Programs

When a program is executed, two broad categories of data are placed in memory:

1. Object code - The instructions which are executed.

2. Variables - The individual data that are processed.



Representing Numbers

The lowest unit of memory is represented as a bit, which can either be 1 or 0.

The next largest unit of measurement for information is a byte, which consists of
8 bits.



Representing Numbers

Another unit of measurement for data is a word, which has a size dependent on
a specific architecture.

Commonly, a word is designed to optimize at the hardware level. The size is
usually chosen such that an entire instruction can be transferred in a single

operation.

Sometimes the size represents the largest possible address size.



Representing Numbers

Any number can be conveniently represented as a combination of the multiples of
each of the powers of the base.

Examples in base 10

® 212 =2%102+1 10! + 2 % 10°

1650 = 1 % 103 + 6 % 102 + 5 % 10 + 0 * 10°
6 =6x10°

21 =210 + 1% 10°



Representing Binary

Binary numbers can either be 0 or 1 for each power. They can be represented
similarly to the approach taken in the previous slide.

Examples in base 2

e 2=1x24+0x%20
©32=1%24+0%2+0%x22+0%x224+0%x2"+0x20
¢ 10=1x234+0%224+1%2+0x%20

e 5=1%224+0%x21 +1x2°



Converting from decimal to binary

Base Notation
When representing numbers from multiple systems, it is convenient to show the
base of each number using a subscript.

e 1274 = 1111111,

e 5,0 =101,

e 2561 = 100000000,
e 30 =11,



Representing Hexadecimal

Hexadecimal numbers have digits that can be 0 — F, reflecting a base of 16.
The counting sequence of hexadecimal is 0-9 then A-F.

Examples in base 16

e F=15x16°

80 = 8 % 161 + 0 x 16°

FF = 15 % 16! + 15 x 16°

AOE = 10 % 162 + 0 % 16 + 14 x 16°



Converting from decimal to hexadecimal

12819 =716
Conversion: Divide by the base you are converting to. The remainder fills up
the right-most digit.

128

= = 8 remainder 0

10



Converting from decimal to hexadecimal

12819 =716
Conversion: Divide by the base you are converting to. The remainder fills up
the right-most digit.

% = 8 remainder 0

Take the remaining value, 8, and divide again, placing the remainder in the next
position.

18—6 = 0 remainder 8

Result: 12810 = 8016
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Converting from decimal to hexadecimal

31210 =716

312

= 19 remainder 8

Intermediate Result: 84

% = 1 remainder 3

Intermediate Result: 384

1 o .
6= 0 remainder 1

Final Result: 1384¢
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Scalar Types in C

e C supports character, integer, and scalar types.
e Each type has a minimum size.

e Character and integer types can either be signed or unsigned.
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Scalar Types in C

Integer types can represent a range of numbers dependent on their size.

For example, an integer type with a size in m bits can represent a range of
[-2m~1 —1,2m~1 — 1] for signed types and [0,2™ — 1] for unsigned types.

13



Scalar Types in C

https://en.wikipedia.org/wiki/C_data_types
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https://en.wikipedia.org/wiki/C_data_types

Signed versus Unsigned Types

An int is a signed type, meaning it can represent both positive and negative
numbers.

The minimum bit size of an int is 16 bits.
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Signed Types

The left-most bit in a signed type is called the sign bit.

A 1 signifies a negative value, and a 0 is a positive value.

Examples
® 01112 = 710
e 1111, = —T7q
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Example: rollover.c
Example: sizeof.c
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Type Conversions

There are two approaches to converting a value from one type to another:

1. Automatic Type Conversion

2. Forced Type Conversion
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Automatic Type Conversion

e Every expression has an associated type.
e Expressions resulting from logical or relational operators have type int.

e All values of char or short are promoted to int before processing.
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Dominating Types

Automatic conversions involving mixed types acted upon by a binary operation
generally follow the following prioritization:

long double
double

float
unsigned long
long

unsigned

No@ & S W =

int
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Automatic Type Conversions

Further reading: Chapter 3.10

Example: auto_convert.c

21



Forced Type Conversions

Individual expressions and values can be cast to a different type using the
following syntax:

Syntax

(type) var;

Example

float a = 3.1;

printf("a as an int is %d\n", (int) a);
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