CSE 1320 - Intermediate Programming

Data Types & Number Systems

Alex Dillhoff

University of Texas at Arlington



Numbers in Memory

Data is represented in memory dependent on the type. The type also
determines how much memory they require.

There are several types in C:

e Scalar
o Aggregate

Functions

e Union
Struct
e Void



Memory and C Programs

When a program is executed, two broad categories of data are placed in memory:

1. Object code - The instructions which are executed.

2. Variables - The individual data that are processed.



Representing Numbers

The lowest unit of memory is represented as a bit, which can either be 1 or 0.

The next largest unit of measurement for information is a byte, which consists of
8 bits.



Representing Numbers

Another unit of measurement for data is a word, which has a size dependent on
a specific architecture.

Commonly, a word is designed to optimize at the hardware level. The size is
usually chosen such that an entire instruction can be transferred in a single

operation.

Sometimes the size represents the largest possible address size.



Representing Numbers

Any number can be conveniently represented as a combination of the multiples of
each of the powers of the base.

Examples in base 10

® 212 =2%102+1 10! + 2 % 10°

1650 = 1 % 103 + 6 % 102 + 5 % 10 + 0 * 10°
6 =6x10°

21 =210 + 1% 10°



Representing Binary

Binary numbers can either be 0 or 1 for each power. They can be represented
similarly to the approach taken in the previous slide.

Examples in base 2

e 2=1x24+0x%20
©32=1%24+0%2+0%x22+0%x224+0%x2"+0x20
¢ 10=1x234+0%224+1%2+0x%20

e 5=1%224+0%x21 +1x2°



Converting from decimal to binary

Base Notation
When representing numbers from multiple systems, it is convenient to show the
base of each number using a subscript.

e 1274 = 1111111,

e 5,0 =101,

e 2561 = 100000000,
e 30 =11,



Representing Hexadecimal

Hexadecimal numbers have digits that can be 0 — F, reflecting a base of 16.
The counting sequence of hexadecimal is 0-9 then A-F.

Examples in base 16

e F=15x16°

80 = 8 % 161 + 0 x 16°

FF = 15 % 16! + 15 x 16°

AOE = 10 % 162 + 0 % 16 + 14 x 16°



Converting from decimal to hexadecimal

12819 =716
Conversion: Divide by the base you are converting to. The remainder fills up
the right-most digit.

128

= = 8 remainder 0

10



Converting from decimal to hexadecimal

12819 =716
Conversion: Divide by the base you are converting to. The remainder fills up
the right-most digit.

% = 8 remainder 0

Take the remaining value, 8, and divide again, placing the remainder in the next
position.

18—6 = 0 remainder 8

Result: 12810 = 8016

10



Converting from decimal to hexadecimal

31210 =716

312

= 19 remainder 8

Intermediate Result: 84

% = 1 remainder 3

Intermediate Result: 384

1 o .
6= 0 remainder 1

Final Result: 1384¢

11



Scalar Types in C

e C supports character, integer, and scalar types.
e Each type has a minimum size.

e Character and integer types can either be signed or unsigned.

12



Scalar Types in C

Integer types can represent a range of numbers dependent on their size.

For example, an integer type with a size in m bits can represent a range of
[-2m~1 —1,2m~1 — 1] for signed types and [0,2™ — 1] for unsigned types.

13



Scalar Types in C

https://en.wikipedia.org/wiki/C_data_types

14


https://en.wikipedia.org/wiki/C_data_types

Signed versus Unsigned Types

An int is a signed type, meaning it can represent both positive and negative
numbers.

The minimum bit size of an int is 16 bits.

15



Signed Types

The left-most bit in a signed type is called the sign bit.

A 1 signifies a negative value, and a 0 is a positive value.

Examples
® 01112 = 710
e 1111, = —T7q

16



Example: rollover.c
Example: sizeof.c

17



Type Conversions

There are two approaches to converting a value from one type to another:

1. Automatic Type Conversion

2. Forced Type Conversion

18



Automatic Type Conversion

e Every expression has an associated type.
e Expressions resulting from logical or relational operators have type int.

e All values of char or short are promoted to int before processing.

19



Dominating Types

Automatic conversions involving mixed types acted upon by a binary operation
generally follow the following prioritization:

long double
double

float
unsigned long
long

unsigned

No@ & S W =

int

20



Automatic Type Conversions

Further reading: Chapter 3.10

Example: auto_convert.c

21



Forced Type Conversions

Individual expressions and values can be cast to a different type using the
following syntax:

Syntax

(type) var;

Example

float a = 3.1;

printf("a as an int is %d\n", (int) a);

22



