
CSE 1320 - Intermediate Programming
Pointers

Alex Dillhoff

University of Texas at Arlington

1

Addressing

A program keeps track of memory using an addressing system.

Some systems address each byte and are called
byte-addressable computers.

Others are word-addressable.

2

Addressing

When a program is executed and loads into memory, the
loader determines where in memory the values of each
variable are stored.

These memory locations in which the values are stored are
called addresses.

In C, we can determine the address of any variable using the &
operator.

3

Pointers

Pointers in C are addresses to some location in memory that
contains an object or function.

This allows data to be accessed from anywhere, as long as you
have a pointer to it.

4

Pointers

The & operator, when applied to a variable, produces a
pointer value.

A pointer variable stores the address of a memory location.

Note: This address is considered a value.

5

Pointers

In C, every data type has a corresponding pointer-to type.

The pointer type is derived from the referenced type – the
object or function type.

• pointer-to-int
• pointer-to-char
• pointer-to-double
• etc.

This implies that we can have pointers to pointers. 6

Pointers

To declare a pointer, add an asterisk before the identifier.

int *intptr;
char *charptr;

7

Pointers

Example: Create a pointer-to-int and assign it the address of
an existing integer.

8

Pointers

Consider the following code.

int a = 10;
int a_ptr = &a;

9

Pointers

Both variables have an address AND a value.

Type Name Address Value
int a 0xFF0 10
int * a_ptr 0xFF4 0xFF0

The type indicates what kind of value is stored at that address.

10

Pointer Arithmetic

Pointer arithmetic permits addition between a pointer and an
integer.

int *ptr = 0xFF0;
// increases the address by 3 `int`s
ptr += 3;

What will be the result?

11

Pointer Arithmetic

int *ptr = 0xFF0;
// increases the address by 3 `int`s
ptr += 3;

What will be the result?

If an int takes up 4 bytes, then
FF0 + 3 * sizeof(int) = FFC.

12

Pointer Arithmetic

It also allows subtraction between two pointers or a pointer
and an integer.

int *ptr1, *ptr2;
// size between the pointers
int diff = ptr1 - ptr2;

13

Pointer Arithmetic

Example: pointer_arithmetic.c

14

Dereferencing Pointers

The address is useful for knowing where the value is stored,
but how do we get the value stored at a particular address?

C permits this through dereferencing.

15

Dereferencing Pointers

The address is useful for knowing where the value is stored,
but how do we get the value stored at a particular address?

C permits this through dereferencing.

15

Dereferencing Pointers

The syntax for dereferencing a pointer is *.

int a = 5;
int *ptr = &a;
printf("%d", *ptr);

Output: 5

16

Understanding the Syntax

Declare a pointer-to-int named ptr.

int *ptr;

The variable ptr is a pointer-to-int and *ptr is an int.

17

Pointer Examples

Understand the difference between the following:

• *ptr
• *ptr + 1
• *(ptr + 1)
• (*ptr) + 1
• *&ptr
• &ptr
• &ptr + 1

18

Assigning Manual Locations

It is possible to assign a memory location to a pointer
manually.

int *ptr = (int *) 4;

However, the operating system may not allow the program to
alter the contents at that memory location.

19

Default Assignment

It is good practice to assign NULL to pointer declarations.

int *ptr = NULL;

NULL is defined in most of the standard library headers,
including stdio.h.

20

Testing Pointers

Example: Testing pointers for valid addresses

21

Arrays and Pointers

The name of an array points to the address of the first object
in the array.

We can use pointer arithmetic to move to subsequence
addresses.

char arr[] = { 'a', 'b', 'c', 'd' };
char *c_ptr = arr + 2;
char c = *c_ptr; // 'c'

22

Arrays and Pointers

Example: Pointer arithmetic on arrays

23

Strings and Pointers

Using pointer notation with strings is very similar to using
pointers with arrays.

The identifier of the string is a pointer to the first character in
the string.

24

Strings and Pointers

Example: print_string.c

This example also showed the usage of the const keyword.
When added at the start of a variable declaration, this
qualifier prevents the variable from being modified.

25

Strings and Pointers

The string functions provided in string.h require pointers to
char.

Compare the input to the function declarations listed at
https://www.cplusplus.com/reference/cstring/

Example: String tokenization and string search.

26

https://www.cplusplus.com/reference/cstring/

String Literals vs. Character Arrays

In the previous example, we saw that the following
initializations produced different results:

// Character Array
char arr[] = "char array.";

// String Literal
char *arr_ptr = "String literal.";

27

String Literals vs. Character Arrays

They seem very similar, but the C standard has different rules
regarding them.

See Section 6.7.8 Example 32 http:
//www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf

28

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf

String Literals vs. Character Arrays

The first declaration

char arr[] = "char array.";

Creates a char array object arr and initializes it with the
string literal "char array."

29

String Literals vs. Character Arrays

The second declaration

char *arr_ptr = "String literal.";

Points to an object with type ”array of char” whose elements
are initialized with a string literal.

Any attempt to modify the array pointed to by arr_ptr is
undefined.

30

Pointer Arithmetic for 2D Arrays

Compare and understand the following examples of pointer
arithmetic with a 2D array.

char arr2d[10][10];
char *ptr1 = *arr2d; // &arr2d[0][0]
*ptr1 = *(arr2d + 1); // &arr2d[1][0]
*ptr1 = *(*arr2d + 1); // &arr2d[0][1]

31

Double Indirection

A pointer to another pointer is referred to as double
indirection.

int a = 10;
int *b = &a;
int **c = &b;

32

Double Indirection and Arrays

It might seem intuitive at this point to think of the following
as a possibility:

int arr[2][2] = { 0 };
int **arr_ptr = arr;

We have already seen how the identifier of the array is the
address.

int arr[2] = { 0 };
int *arr_ptr = arr;

33

Double Indirection and Arrays

Example: array2d_static.c and array2d_pointers.c

Compare access of 2D array statically versus one with double
indirection.

34

Memory Layout of Static Arrays

This is similar to a 2D array in some respects, but the memory
layout between pointers-to-pointers and a static 2D array is
different.

Recall that when an array is created in C, the values of the
array are guaranteed to be contiguous in memory.

35

Memory Layout of Static Arrays

A static 2× 2 array in C would have the following memory
layout.

Location Value
0 1
4 2
8 3
12 4

36

Memory Layout of Pointer Arrays

An 2× 2 array of pointers-to-int might have the following
layout.

Location Value
0 1000
8 2000
16 3000
24 4000

The values are addresses of each integer.
37

Memory Layout of Arrays

Example: ptrptr.c

38

Pointers to Functions

Just as each variable identifier has an address associated with
it, the identifier of a function also has an address.

This address represents the location of the execution code for
that function.

39

Pointers to Functions

The fact that the identifier is an address means that we can
declare a pointer to a function returning any type.

The value of such a pointer would be the address pointing to
the execution code of the function.

40

Pointers to Functions

Consider the following declaration.

int (*fn_ptr)(int a);

First, what is (*fn_ptr)(int a)?

This pointer to a function is an int.

41

Pointers to Functions

Consider the following declaration.

int (*fn_ptr)(int a);

First, what is (*fn_ptr)(int a)?

This pointer to a function is an int.

41

Pointers to Functions

The parentheses around *fn_ptr indicate that the identifier
is bound to the dereference operator before the argument
list.

42

Pointers to Functions

Removing the parenthesis yields

*fn_ptr(int a);

This is a function taking a single int. We have already
established that it returns int.

43

Pointers to Functions

Removing the dereference operator leaves a pointer to a
function that returns an int and accepts an int as input.

This is analogous to the following:

int *ptr;

*ptr will return an int. Removing the dereference operator
returns an address.

44

Pointers to Functions

Example: operator_ptr.c

45

Function Pointers: Another Example

int (*fn (char *c)) (int a, int b);

fn is a function that takes one string and returns a pointer to
a function that returns a int and accepts two int values.

46

Function Pointers: Another Example

Example: operator_ptr_return.c

47

Function Pointers: qsort

qsort is a function from the standard C library which
implements the quick sort algorithm.

The declaration of the function is:
void qsort(void *base, size_t num, size_t width,

int(*compare)(const void *elem1, const void *elem2));

48

Function Pointers: qsort

The first three parameters relate to the values or objects to be
sorted.

• base - The array of elements.
• num - The number of elements in the array.
• width - The byte size of each element.

49

Function Pointers: qsort

The fourth argument is a function pointer which is used to
compare two elements in the array. This will be defined
depending on the application.

The input type for this comparison function is void * so that
it can handle any data type.

50

Function Pointers: qsort

The comparison function must return an integer less than,
equal to, or greater than zero if the first argument is
considered to be respectively less than, equal to, or greater
than the second.

If two members are equal, their relative order is undefined.

51

Function Pointers: qsort

Example: qsort_basic.c

52

qsort and structs

It is also useful to complex elements such as an array of
struct depending on some member value.

This requires that the elements of the comparison function be
cast to the desired struct and member.

53

qsort and structs

Example: qsort_struct.c

54

Command Line Arguments

Thus far, we have accepted void as a formal parameter to
main.

Our programs can become more general by accepting
parameters from the command line.

55

Command Line Arguments

In C, the main function accepts two formal parameters:

int main(int argc, char **argv) {
return 0;

}

56

Command Line Arguments

The first argument argc represents the number of command
line arguments passed via stdin, including the name of
application.

57

Command Line Arguments

Source
#include <stdio.h>
int main(int argc, char **argv) {

printf("%d\n", argc);
return 0;

}

Output
$./a.out arg1 arg2 arg3
4

58

Command Line Arguments

The second argument is a pointer-to-pointer-to-char.

It stores each individual command line argument, where an
argument is separated by a space.

59

Command Line Arguments

Example: Print Arguments

60

Command Line Arguments

Example: Command Line Operators

61

