CSE 1320 - Intermediate

Programming
Structs and Typedefs

Alex Dillhoff

University of Texas at Arlington



Aggregate Data Types

Aggregate data types are design to store multiple
values.

We have been using arrays, which is an instance of
an aggregate data type.



Aggregate Data Types

Aggregate data types are not necessarily restricted
to multiple values of a single type.

C structs permit the storage of multiple data
types within one entity.



Structs

Structs are created in C to represent complex data.
If we wanted a struct to represent a user in a generic
database, the declaration would like look this:

#define MAX_STR_LEN 128

struct user {
int id;
char username [MAX_STR_LEN] ;
char password[MAX_STR_LEN];
char email [MAX_STR_LEN];



Structs

Each individual data type declared within the
struct is referred to as a member.

The previous example created a struct with 4
members.



Structs

A struct in C can have almost any data member
with a few exceptions:
» A member cannot be a function.
» A member cannot have type void.
» The struct cannot have a member with the
same type as the struct.



Structs

Note that the name of the struct given in the
previous declaration is not the name of an individual
variable.



Struct Declaration

To create an instance of the previously declared
struct, the declaration would be

struct user user_var;

Here, the type is struct user and the identifier is
user_var.



Struct Declaration

It is possible to declare multiple variables of a
struct in one line.

struct user userl, user2;



Struct Declaration

The declaration of the struct can be combined
with the declaration of variables.

#define MAX_STR_LEN 128

struct user {
int id;
char username[MAX_STR_LEN];
char password[MAX_STR_LEN];
char email [MAX_STR_LEN];

} userl, user?2;



Struct Initialization

It is possible to initialize a variable of a struct.

For example, we could assign data to a newly
declared struct user with the following syntax:

struct user user_var = {
1,
"praxideke",
"Hy1810",
"prax@gbr.io"



Struct Initialization

Similar to other aggregate types, it is possible to

initialize partial data by omitting the rest of the
members.

Example

struct user user_var = { 1 };

The rest of the members are zeroed out.



Accessing Members

The member of a struct can be accessed using
dot notation.

Example

user_var.username;



Structs

Example: Print struct members.



Structs and Memory

When creating a struct in memory, space is
allocated for each member.

This implies that the sizeof () used with a struct
variable returns an accurate size.



Structs and Memory

When a struct is created, it is possible that there
are unused bytes in between each data member.

This is dependent on the system the program is
executed on.



Structs and Memory

Further Discussion: Padding and Packing
https://stackoverflow.com/questions/4306186 /structure-
padding-and-packing



Structs and Memory

Example: Observe the size of the struct and
all of its members.



Arrays of Structs

Since a struct is a data type, it can be created as
an array. Consider the declaration:

struct creature dragons[5];

which creates an array of struct with size 5 to
store creature data.



Arrays of Structs

Accessing individual elements is similar to any other
array:

dragons[0]; // First member
dragons[1]; // Second member



Arrays of Structs

Similarly, accessing members of each element is as
easy and using the dot notation on the element that
was accessed.

dragons [0] .name;



Arrays of Structs

Since a struct can be initialized with an
assignment, so can an array of struct.

struct creature dragons[5] = {
{ "Brimscythe" },
{ "Vorugal" },
{ "Umbrasyl" },
{ "Raishan" },
{ "Thordak" }



Struct Pointers

A pointer to struct can be created just as a
pointer to any other data type.

struct creature *creature_ptr;



Struct Pointers

When working with a pointer to struct, the syntax
to access the members changes slightly.

creature_ptr—>name;
creature_ptr->hp;



Struct Pointers

Pointers to struct allow a loophole to the previous
restriction on member data types.

A struct may not have a data member which is of
its own type.
However, it may have a pointer to that type.



Struct Pointers

Example: Quake 3 image_s



Structs as Function Arguments

Passing a struct as an argument to a function is
similar to any other data type.

Example: Read data into struct pointer



Typedefs

Typedefs in C are used to associate a given
identifier with an existing type.

Its usefulness is immediately apparent when
considering structs.



Typedefs

Consider the following example of creating a new
struct with a type definition.

typedef struct {
char name[100];
int hp;
int ac;
int speed;
int cr;

} CREATURE;



Typedefs

The corresponding variable declaration for this new
type would then be

CREATURE dragon;



