
CSE 1325 - Object-Oriented Programming
Classes and Objects

Alex Dillhoff

University of Texas at Arlington



Object-Oriented Programming

Object-Oriented Programming involves abstracting the properties
and behaviors of some concept or entity into objects.

The program is determined by how these objects interact with
themselves and the rest of the code.

Objects are defined by putting the data first before defining the
actions that manipulate that data.



Object-Oriented Programming

Throughout this course, we will cover the three main pillars of
OOP:

▶ Encapsulation

▶ Inheritance

▶ Polymorphism



Classes

Encapsulation is the idea of combining data and behavior into a
single entity.

Through this abstraction, the data and logic are hidden away from
outside interference.



Classes

This prevents misuse of the data and ensures that only the intended
behavior is executed.

In Java, this is done through the use of classes.



Classes

In OOP languages, an object is an instance of a particular class.

A class defines

▶ how the object is made,

▶ what data properties the object has,

▶ and the behaviors (methods) of the object.



Classes

The data, or properties, of an object are defined as instance
fields.

Each object may have specific values set for its instance fields.



Classes

The concept of instance fields are intuitive when thinking about
user accounts online.

A user has a unique name, some password, and maybe some
personal information.

These would all be examples of instance fields.



Classes

The functions and behaviors that act upon the properties of an
object are called methods.

An example of a method might be a changeEmail() method.



Classes

Generally, classes should be defined such that the instance fields are
never directly accessible by other classes.

Any changes to those properties should be defined within class
methods.



Classes

A general layout for a class is grouped in the following order:

public class MyClass {

/* Instance Fields */

/* Constructors */

/* Mutators and Accessors */

/* Methods */

}



Objects

A specific instance of a class is called an object.

Objects are characterised by their behavior, their state, and their
identity.



Objects - Behavior

▶ What can this object do?

▶ What methods can we execute on a particular object?

▶ How can we change the underlying state or properties of an
object?



Objects - Behavior

Examples

▶ A user can log in.

▶ An item can be added to a cart.

▶ A player can join a group.



Objects - State

▶ What defines the state of the object?

▶ How does the data change when interacting with this object?

▶ What is the current state of the data?



Objects - Behavior

Examples

▶ A user is logged in.

▶ An item is in a cart.

▶ A player is in a group.



Objects - Identity

▶ What makes this particular object unique?

▶ How can we compare two objects of the same type?



Objects - Identity

If the object needs to be truly unique, assign it a unique identifier
(e.g. user IDs).

If the object is not unique, then it should be comparable to others
based on one of its instance fields.



Object and Memory

In Java, all objects are created on the heap as opposed to the
stack.

This is indicated by the fact that all objects are created with the
new operator.

Unlike heap storage in C/C++, there is no operator to free memory
for objects. All memory allocations are handled by the garbage
collector.



Working with Objects

Java has many useful classes that can be used as part of the API.

So far, we have primarily used static methods from classes such as
Math.

Let’s create and use an object of the Date class.



The Date Class

Example: DateExample.java



Mutators and Accessors

Also referred to as setters and getters, these are methods that
allow users to safely interface with the underlying instance fields.



Mutators and Accessors

Consider the following code.

LocalDate today = LocalDate.now();

LocalDate yesterday = today.minusDays(1);



Mutators and Accessors

The mutator method minusDays(long) allows the user to modify
the underlying instance field representing the days without
providing explicit access.

An explicit access might look like this:

yesterday = today.days - 1;



Mutators and Accessors

Likewise, an accessor method will provide access to the underlying
instance field.

// Gets the month value from 1 to 12

int month = today.getMonthValue();



Mutators and Accessors

Why use these methods instead of providing direct access?

▶ Future-proof - if the underlying representation needs to
change, it does not affect how other methods and classes
utilize the call.

▶ Robust - by abstracting the underlying field, errors can be
checked and handled when bad input is given.



Mutators and Accessors

Why use these methods instead of providing direct access?

▶ Future-proof - if the underlying representation needs to
change, it does not affect how other methods and classes
utilize the call.

▶ Robust - by abstracting the underlying field, errors can be
checked and handled when bad input is given.



this - The Implicit Parameter

Consider the following mutator method:

public void setName(String n) {

name = n;

}

There is an obvious (explicit) method parameter: String n.



this - The Implicit Parameter

Consider the following mutator method:

public void setName(String n) {

name = n;

}

There is also an implicit parameter: this.



this - The Implicit Parameter

this refers to the object that the method is being called on.

Thus, the method shown before can also be written as

public void setName(String n) {

this.name = n;

}



Mutators and Accessors

A natural and reasonable question to have at this point is...

Why use mutators and accessors over declaring a public

instance field?



Mutators and Accessors

The simple answer is that developers will make mistakes.

By restricting the way in which instance fields can be updated, we
are adding more definition to a class.



Mutators and Accessors

Consider an public instance field that stores an e-mail address.

It is perfectly reasonable to assume that the e-mail could be set to
an invalid address
(e.g. not_a_real_address@domain).



Mutators and Accessors

If this was assigned to a public instance field, there may or may
not be any validation to make sure the address is valid.

When the address is used later on in some other context, it could
lead to other issues.



Mutators and Accessors

If the instance field was private with a corresponding mutator
method, additional validation code could be added to make sure
invalid addresses cannot be entered.



Accessors that Return Objects

Be careful when creating an accessor that returns an object.

Consider the following accessor which returns an instance field.

public Date getCreationDate() {

return creationDate;

}



Accessors that Return Objects

In this example, creationDate is an instance field of type Date.

In this case, a reference to the object is returned.

Calling a method such as setTime() will modify the underlying
data of the original object.



Accessors that Return Objects

Example: OrderReferenceExample.java



Accessors that Return Objects

If you are working with a mutable object that is returned in a call,
consider making a clone of it.

Of course, if your intent is to return a mutable object then no
change is necessary.



Designing Classes

How do you know when to define a class?

Look at the nouns in your project description.



Designing Classes

How do you know when to define a class?

Look at the nouns in your project description.



Designing Classes

Example
Create an app where users can share images with each other. Users
can add individual images to their favorites list.



Designing Classes

We can easily identify a user class.

Some actions are explicit:

▶ Post images

▶ Add other images to their favorites



Designing Classes

Other behaviors are implicit or come from domain knowledge.

▶ Users need to be able to log in and log out.

▶ If a user can add images to a favorites list, that list should an
instance field in the class.



Designing Classes

Another Example

Design a class that represents a player in a Role Playing Game. The
player should have a name, some hit points, possibly an
inventory, and whatever other properties you can think of.



Designing Classes

Let’s begin to put together a class based on the previous
description.

Example: Player.java



Static Fields and Methods

So far, the instance fields and methods we have used for the
Player class have all required that an instance of the object be
created first.

We also have the ability to create static fields and methods.



Static Fields and Methods

Consider the following instance field.

private static int playerId = 1;

This field will be shared by all instances of the class. That includes
having the ability to modify it.



Static Fields and Methods

We can also make these fields constant using the final keyword.

We have seen this used in the Java API, specifically the Math class.

public static final double E = ...;



Static Fields and Methods

The constants from the Math class are both public and static.

This implies two things:

1. They are accessible outside of the class.

2. They do not require an object to be created in order to use
them (no implicit parameter).



Static Fields and Methods

static methods are useful when we have an action related to our
class that is defined by explicit parameters.

An example of this would be Math.max(double a, double b).



Static Fields and Methods

This method does not require an instance of an object to use, nor
does it require any internal or private instance fields.



Static Fields and Methods

A special case of static methods involve constructors.

Consider the method public static LocalDate now().



Static Fields and Methods

This method will create a new instance of LocalDate and set the
time based on the current value of the local clock.

Methods such as these, which return an object as part of their
definition, are called factory methods.



Static Fields and Methods

Factory methods allow us to vary the types of object instantiation
we can perform in our classes.

They also allow us to write method names that are more specific
instead of being stuck with the class name itself.



Using the Class

Now that we have a custom class to work with, let’s implement and
use it in a program.

Typically, the classes you create will not include a main method.

Instead, you will use them as part of a larger program.



Using the Class

In the next example, we will instantiate an object of type Player
similarly to any other object.

Player p1 = new Player("Vex'ahlia");

We are able to use any of the constructors that we defined in the
original class definition.



Using the Class

A few key points about constructors:

▶ They are always called with the new operator.

▶ They share the same name as the class.

▶ They have no return value.

▶ If none are defined, a default constructor is assigned (sets all
values to 0).



Using the Class

Example: PlayerTest.java



Running the Code

In this example, we have multiple source code files.

When compiling with C, we would give as input all code files
needed for our program.

With javac, we only need to input the source code file containing
the main method.



Running the Code

javac will behave similar to make in that it will look for any
dependences referenced in the main code file.

If any of those dependencies need to be re-compiled, it will
automatically do so.



Securing the Constructor

Any object variable can hold a null value to indicate that there is
no object.

What happens if we try to pass a null value as the name when
creating a Player?

Player p1 = new Player(null);



Securing the Constructor

Initially, nothing bad will happen until we attempt to call a method
on the name, a String object.

By that time, it will not be clear that the error originated within the
constructor.



Securing the Constructor

There are a couple ways to resolve this:

▶ Check for null using a control statement.

▶ Use Objects.requireNonNullElse

▶ Use Objects.requireNonNull

Example: Modify Player.java



Destructors in Java

Unlike C++, Java has no destructor method.

The garbage collector will automatically return all unused memory.

However, other resources that are open will not be automatically
reclaimed.



Destructors in Java

Resources such as file handles must be closed as soon as you are
done with them.

The best way to ensure this happens is to keep your resource
accesses self-contained.

For example, create a method which opens the file, writes the data,
and then closes the handle.



static Imports

We can statically import packages which may be convenient for
writing more compact code.

Consider the statement:
Math.sqrt(Math.max(Math.min(a, b), c)).

This statement chains together multiple static methods from the
Math library.



static Imports

We can forego the explicit reference to the Math class by statically
importing it:

import static java.lang.Math.*;

We can now reference the methods directly (e.g.
sqrt(max(min(a, b), c));).


