
CSE 1325 - Object-Oriented Programming
Collections

Alex Dillhoff

University of Texas at Arlington



Collections

Collections in Java were not part of the original release.

The Collections framework provides many useful data structures
and algorithms.



Collections

They include iterators which allow easy access to the underlying
data.

Additionally, they are easily extensible. Custom collections can be
created through subclassing.



Collection Interfaces

The base Collection interface is implemented by all collections.

It includes many common operations that any data structure can
use.

Each method is adapted to fit the particular implementation (array,
hash map, etc.).



Collection Interfaces

The following interfaces are extensions of the Collection
interface.

There are many more than are listed in these slides. Refer to the
official Java API for more information.



List Interface

The List interface is used for collections which are sequences of
elements.

Each element is given a position in that sequence and is identified
by that position.

Lists may contain duplicates.



List Interface

Documentation
https://docs.oracle.com/en/java/javase/16/docs/api/

java.base/java/util/List.html

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/List.html


ArrayList Class

The ArrayList class implements the List interface.

It is useful because it supports dynamic arrays.



ArrayList Class

Documentation
https://docs.oracle.com/en/java/javase/16/docs/api/

java.base/java/util/ArrayList.html

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/ArrayList.html


LinkedList Class

The LinkedList class implements the List, Queue, and Deque

interfaces.

It provides an efficient linked list data structure.



LinkedList Class

Documentation
https://docs.oracle.com/en/java/javase/16/docs/api/

java.base/java/util/LinkedList.html

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/LinkedList.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/LinkedList.html


Set Interface

The Set interface also defines a sequence of elements.

However, it does not allow duplicate elements.



Set Class

Documentation
https://docs.oracle.com/en/java/javase/16/docs/api/

java.base/java/util/Set.html

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Set.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Set.html


HashSet Class

The HashSet class implements Set.

Elements inserted into this data structure are placed into a hash
table.

The hash code is set automatically.



HashSet Class

Documentation
https://docs.oracle.com/en/java/javase/16/docs/api/

java.base/java/util/HashSet.html

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/HashSet.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/HashSet.html


TreeSet Class

The TreeSet class extends AbstractSet and implements
NavigableSet.

Elements added to this must implement Comparable.



TreeSet Class

Elements are stored in sorted, ascending order.

This data structure is beneficial because it provides guaranteed
log(n) time for add, remove, and contains.



TreeSet Class

Documentation
https://docs.oracle.com/en/java/javase/16/docs/api/

java.base/java/util/TreeSet.html

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/TreeSet.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/TreeSet.html


SortedSet Interface

The SortedSet interface extends Set.

Elements are sorted by ascending order when the set is created.

The elements must implement Comparable.



SortedSet Interface

Documentation
https://docs.oracle.com/en/java/javase/16/docs/api/

java.base/java/util/SortedSet.html

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/SortedSet.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/SortedSet.html


NavigableSet Interface

The NavigableSet interface extends SortedSet.

It provides a way to retrieve items that are close to the search
query.

For example, higher(E e) returns the least element in the set
strictly greater than the given element, or null if there is no such
element.



NavigableSet Interface

Documentation
https://docs.oracle.com/en/java/javase/16/docs/api/

java.base/java/util/NavigableSet.html

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/NavigableSet.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/NavigableSet.html


Queue Interface

Queue declares methods required to implement a standard First In
First Out (FIFO) queue.

Documentation
https://docs.oracle.com/en/java/javase/16/docs/api/

java.base/java/util/Queue.html

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Queue.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Queue.html


PriorityQueue Class

The PriorityQueue class orders element according to their
natural ordering or by a Comparator provided to the constructor.

The head of the queue is the least element with respect to
ordering.

Natural ordering refers to the object’s implementation of
Comparable.



PriorityQueue Class

Documentation
https://docs.oracle.com/en/java/javase/16/docs/api/

java.base/java/util/PriorityQueue.html

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/PriorityQueue.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/PriorityQueue.html


Map Interface

Maps are key/value stores that do not allow for iterating.

However, you can obtain a Collection view of the map to access
iterators.



Map Interface

Maps map unique keys to values. 1em
They are extremely efficient when adding, removing, and accessing
objects.



Map Interface

Documentation
https://docs.oracle.com/en/java/javase/16/docs/api/

java.base/java/util/Map.html

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Map.html


HashMap Class

This class implements the Map interface.

It provides an optimized version of a hash table similar to the one
you may have implemented in CSE 1320.



HashMap Class

Documentation
https://docs.oracle.com/en/java/javase/16/docs/api/

java.base/java/util/HashMap.html

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/HashMap.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/HashMap.html


Iterators

Iterators are used to iterate though a collection.

They do so by providing methods such as hasNext() and next().



Iterators

A regular Iterator, returned using iterator(), allows you to
traverse forward through a collection.

A ListIterator, returned using listIterator(), allows
traversals in both directions as well as the ability to modify
individual elements.



Iterators

Documentation
https://docs.oracle.com/en/java/javase/16/docs/api/

java.base/java/util/Iterator.html

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Iterator.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Iterator.html

