
Introduction to C++
CSE 1325

Alex Dillhoff

University of Texas at Arlington



History of C++

C++ was created by Bjarne Stroustrup.

It began as a superset of C which includes the concept of a class.

Classes provide a multitude of features for user-defined types,
abstraction, and modularity.



History of C++

Since its inception, C++ has gone through several iterations.

Modern day C++ is almost unrecognizable from its original version.

In this class, we will cover the C++11 standard.



Transitioning from C

Any function written in C can be written in C++.

In fact, C code can be written directly in a C++ program.

However, part of programming in C++ means adhering to modern
standards and practices.



The First Program

Even with the most basic program, there are obvious similarities
and differences between C++ and C.

#include <iostream>

int main() {

std::cout << "Hello, CSE1320.\n";

}



The First Program

The statement std::cout << "..."; is probably the most
obvious difference.

C++ uses the concept of streams for input and output.

The inclusion of iostream should be a sign that the C++
Standard Library is different.



Variables in C++

Variables in C++ are created almost identically to how they would
be in C.

The major difference will be seen in what can be done with the
variables and how user-defined types are established.



Types in C++

Any type that could be used in C is also in C++.

One of the first welcome additions to C++ is the basic data type
bool.

This can take on true or false as a value.



Types in C++

Another useful addition to types is the auto type specifier.

Using auto as a variable type will infer the type of that variable
from the value given to it.



Initialization

Initialization in C++ can be done similar to that of C.

However, one recommended practice is to use list initialization
instead of using =.



Initialization

Consider the following statements.

int a = 4.3;

int b {4.3};

The first statement int a = 4.3; behaves just as it would in C.

The value is truncated to 4 and assigned to the variable a.



Initialization

The second statement int b{4.3}; will actually throw an error
due to floating-point to integer conversion.

However, C++ provides the programmer with the tools to handle
errors and exceptions that can occur.



range-for loops

C++ supports the loops available in C. That is, while and for.

It also includes the range-for loop.



range-for loops

Consider the following code.

int arr[] = {0, 1, 2, 3, 4, 5, 6};

for (auto val : arr) {

std::cout << val << std::endl;

}

The range-for loop will iterate through all values in a collection,
such as an array.



range-for loops

In the previous example, every value in arr will be copied into the
variable val.

If, instead, we want val to simply refer to each value, we can use
the following syntax.

for (auto& val : arr) {

std::cout << val << std::endl;

}



Pointers

Pointers in C++ will also be familiar. However, the best practices
for using them have changed greatly.

The first major addition is the inclusion of a proper way to
determine if a pointer is null.

In C, this is done with the preprocess definition NULL. This
definition is defined as the integer 0.



Pointers

In C++, the keyword nullptr can be used. This value accurately
depicts a null value for a pointer instead of the integer 0.

The other major addition to pointers in C++ are smart pointers.

These provide protections against memory leaks. We will look at
these more closely in a later lecture.



The vector

With the addition of classes comes a useful implementation: the
vector class.

This is a general aggregate type that is used to represent a
collection of any type, even user-defined types.



The vector

Consider the following statement.

std::vector<double> v({1.1, 2, 3.2});

This creates a collection of type double with 3 values.



The vector

One of the biggest conveniences of the vector class is that it
manages its own memory.

It is possible to add, remove, and resize vector instances without
explicitly working with memory allocation calls.

There are several other useful functions in this class that we will
study later.



General Advice

▶ C++ is not ”C with classes and more features.”

▶ It is generally not optimal to write C code within C++.

▶ Avoid pointer arithmetic if necessary.

▶ Stick to C++ strings and vectors.

We will study many more cases in which the C++ standard is the
optimal solution.


