
CSE 1325 - Object-Oriented Programming
Exception Handling

Alex Dillhoff

University of Texas at Arlington



Exception Handling

What should a program do in the event of a crash?

▶ Save the user state

▶ Gracefully exit (if possible)

▶ Warn the user (logging)



Exception Handling

What should a program do in the event of a crash?

▶ Save the user state

▶ Gracefully exit (if possible)

▶ Warn the user (logging)



Errors in a Program

An error that occurs in one component of a program should not
cause the entire program to crash.

At the very least, there should be an opportunity to save the
current state.



Errors in a Program

In languages like C, error codes can be returned from functions.

This is not fool-proof! Bad input can always cause runtime errors.



Errors in a Program

What errors appear most often?

▶ Input Errors - It is not always easy to predict which input
your program will receive.

▶ Device Errors - Interaction with physical devices such as
physical drives or other machines could fail.

▶ Code Errors - A method could return a bad value which
results in a future error.



Errors in a Program

What errors appear most often?

▶ Input Errors - It is not always easy to predict which input
your program will receive.

▶ Device Errors - Interaction with physical devices such as
physical drives or other machines could fail.

▶ Code Errors - A method could return a bad value which
results in a future error.



Errors in a Program

Java resolves these types of errors with exception handling.

That is, a special object that is thrown due to some error.



Exceptions in Java

Everything is a class in Java and exceptions are no... exception.

An exception object contains information about the error and can
be caught by an exception handler.



Exceptions in Java

Exceptions derive from the Throwable class.

This class has two subclasses Error and Exception.

The Error subclass is typically reserved for internal Java errors.
We will focus on the Exception class.



Exceptions in Java

The Exception class has two useful subclasses: IOException and
RuntimeException.

A RuntimeException is typically thrown due to a programming
errors.

Other exceptions are typically thrown due to errors outside of your
program’s control.



Exceptions in Java

Examples of RuntimeException:

▶ ArrayIndexOutOfBoundsException - An attempt to access
an invalid entry in an array.

▶ IllegalArgumentException - Invalid input to a method was
given.

▶ NumberFormatException - Occurs when an input cannot be
converted to the appropriate number.

▶ NullPointerException - Attempting to call a method on an
object that is null.



Exceptions in Java

Example: NumberFormatExceptionTest.java



Exceptions in Java

Examples of IOException

▶ FileNotFoundException - An attempt to open a file that
does not exist.

▶ EOFException - The end of a file was reached unexpectedly.

▶ FileSystemException - Thrown when a file system
operation fails on one or two files.

▶ NullPointerException - Attempting to call a method on an
object that is null.



Exceptions in Java

Exceptions that derive from Exception or RuntimeException are
called unchecked exceptions.

All other exceptions are checked exceptions and the compiler will
make sure you provide handlers for them.



Exceptions in Java

Generally, unchecked exceptions can be resolved by writing more
robust code.

Create checks for boundaries, verify user input, etc.

Our approach to exception handling will skew more towards
checked exceptions for now.



Checked Exceptions

Let’s revisit a file I/O example. When we attempt to open a file
using a Scanner object, we are required to handle an
IOException.

public static void main(String[] args) throws IOException {

Scanner in = new Scanner(new File("file.txt"));

}



Checked Exceptions

In that example, we absolve ourselves of the responsibility of
handling the file exception by throwing it.

If the file "file.txt" cannot be found, the program crashes.



Checked Exceptions

You should throw exceptions from your method if

1. You call a method that also throws an exception.

2. Your method detects an error and throws a checked exception.

If you don’t throw exceptions in these cases, then any calls to your
method could lead to program termination.



Checked Exceptions

Methods can also throw multiple exceptions.

void readFile() throws IOException, NumberFormatException {

...

}



Throwing Exceptions

Any exception can be used in your code by throwing it.

That is, if you foresee a potential error then you can throw a
relevant exception.



Throwing Exceptions

Example: ThrowExceptionExample.java



Throwing Exceptions

The previous example shows how we can throw exceptions at any
time we please.

We should try to keep our exceptions descriptive and necessary.

Once an exception is thrown in a method, its return value is
irrelevant.



Catching Exceptions

We may choose to catch and handle exceptions ourselves, allowing
our code to gracefully deal with otherwise catastrophic errors.

This is done via the try-catch block.



Catching Exceptions

Example: CatchFileExceptionExample.java



Catching Exceptions

The keywords here are try and catch.

If your code would execute a statement that may throw a checked
exception, you should wrap the logic in a try-catch block.



Catching Exceptions

If a statement in the try block throws an exception, no further
statements in that block are executed.

Any exceptions not explicitly caught by the block will cause the
method to exit.

If that exception is not caught elsewhere on the stack, the program
will terminate.



Catching Exceptions

In general, you should refer to the official Java documentation to
learn which exceptions your program should handle given a
particular class or method.



Catching Multiple Exceptions

If you need to handle multiple exceptions in a try-catch block,
just add them to the chain.

Example: MultipleExceptionExample.java



Examining Exceptions

You can retrieve error details of exceptions with the following class
methods.

▶ getMessage() - Retrieve the error message associated with
the exception.

▶ printStackTrace() - Prints the entire method stack trace
leading to the exception.



Examining Exceptions

Additional control over the stack trace is accessible via the
StackWalker class.

https://docs.oracle.com/en/java/javase/16/docs/api/

java.base/java/lang/StackWalker.html

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/lang/StackWalker.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/lang/StackWalker.html


Rethrowing Exceptions

There may be times when we want to handle an exception and
rethrow a new one.

This is perfectly valid in a number of circumstances, but there is a
right way to do it.



Rethrowing Exceptions

Example: RethrowExceptionExample.java



Rethrowing Exceptions

Another reason you may wish to rethrow an exception is if your
method only logs the error.

In this case, the exception should be rethrown and handled
elsewhere.



The finally Block

Once an exception is caught and handled, no further statements in
a method are executed.

This could lead to memory leaks or other related issues if any
resource handles are not properly closed.



The finally Block

To deal with this, Java provides the finally block that appears as
the last block in a try-catch-finally block.



The finally Block

Example: FinallyExample.java



try-with-Resources

Similar to other languages such as Python, Java (starting with SE
7) provides a useful pattern called try-with-Resources.

If a resource implements the Closeable interface, you can use a
convenient pattern.



try-with-Resources

Example: TryWithResourcesExample.java



try-with-Resources

Classes such as Scanner implement the Closeable interface.

They will automatically close without an explicit call to the
close() method as long as they are in a try-with-Resources

block.



Creating Custom Exceptions

Need a custom exception that does not exist in the Java API?

You can create a new class that extends Exception.



Creating Custom Exceptions

Consider a program that parses a CSV file.

We may want to create a custom exception to show an error in
parsing a line of CSV.



Creating Custom Exceptions

Example: CsvParseTest.java


