
CSE 1325 - Object-Oriented Programming
GUI Programming

Alex Dillhoff

University of Texas at Arlington



GUI Programming in Java

Java’s original GUI subsystem is called the Abstract Window
Toolkit (AWT).

It included basic controls, windows, dialog, and event handling.



GUI Programming in Java

The visual components in AWT were limited because they are
translated into platform-specific components.

Programs written for Windows would use visual elements native to
Windows. This ensure that the apps looked familiar to users.



GUI Programming in Java

Since visual elements were dependent on the specific platform, GUI
applications suffered from inconsistency.

The Swing framework was introduced to alleviate this problem.



GUI Programming in Java

Swing is built on top of AWT, so components from there may still
be used.

Swing components are called lightweight. They are written
completely in Java and do not depend on any platform-specific
implementations.



GUI Programming in Java

With Swing, developers have more control over exactly how their
applications should look and feel.

It also comes with a guarantee that applications will behave
consistently regardless of the platform.



GUI Programming in Java

Swing supports what is called pluggable look and feel (PLAF).

This means developers can separate the look and feel of an object
from the logic of what the component does.



Components and Containers

Swing GUIs consist of two main visual components: components
and containers.

Containers are actually subclasses of components, but they
represent two important concepts.



Components and Containers

Most Swing components derive from the JComponent class.

https://docs.oracle.com/en/java/javase/16/docs/api/

java.desktop/javax/swing/JComponent.html

https://docs.oracle.com/en/java/javase/16/docs/api/java.desktop/javax/swing/JComponent.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.desktop/javax/swing/JComponent.html


Components and Containers

A container holds multiple view components such as button, text
fields, and labels.

There are two types of containers in Swing:

1. Lightweight containers

2. Top-level containers



Lightweight Containers

Lightweight containers refer to components that manage groups or
other components.

These are not top-level containers. A common example is the
JPanel class.



Top-level Containers

Top-level containers are the only Swing components that do not
inherit from JComponent.

Instead, they inherit from AWT’s Component class. They are
considered heavyweight.



Top-level Containers

Top-level containers in Swing include:

▶ JFrame

▶ JApplet

▶ JWindow

▶ JDialog



Top-level Containers

These containers must be at the very top-level of the visual
hierarchy.

It is not recommended to create GUI applications that have
top-level containers as child elements of another top-level container.



Top-level Containers

A top-level container has a set of panes.

The first is JRootPane. This pane manages the other panes as well
as an optional menu bar.



Top-level Containers

The other panes are

▶ Glass pane - Covers other panes, handles mouse events.

▶ Content pane - Where most visual elements will are placed.

▶ Layered pane - Controls the depth of visual elements.



Top-level Containers

Example: BasicFrame



The Event Thread

In the previous example, the GUI application was launched on an
event thread via

SwingUtilities.invokeLater(Runnable object)

This is necessary since Swing components are event-driven.



The Event Thread

Swing components react to events triggered by user interaction as
well as other external sources.

These are handled on a separate event thread as to not interfere
with the main application thread.



Event Handling

Since Swing components respond to and trigger events, it is
important to understand how to handle such events.

The event handlers were originally introduced with AWT. They are
still useful with Swing components.



Event Handling

Events are comprised of sources and listeners.

A source can be something like a visual component or some other
part of your program.

A listener is a handler that catches and responds to the
corresponding events.



Event Handling

There are many sources available and they all derive from
EventObject.

https://docs.oracle.com/en/java/javase/16/docs/api/

java.base/java/util/EventObject.html

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/EventObject.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/EventObject.html


Event Handling

These sources can register listeners.

Any registered listener will be sent the corresponding event when it
occurs.

These are implemented as interfaces.



Event Handling

Example: ButtonEventDemo



Event Handling

The previous example showed that we can define a listener in many
different ways.

We will explore different kinds of listeners in future examples.



Layouts

GUI programs can contain only a few components or hundreds of
components.

Organizing these components should be done in a way that can
easily adapt to new resolutions, resizes, and more.



Layouts

The Java API provides several layouts that can be used to manage
visual components.

Every Container has a layout associated with it.

You can disable the layout for a container by calling
setLayout(null);



FlowLayout

FlowLayout organizes visual components from top to bottom, left
to right.

Components can be arranged using the following constraints:

▶ FlowLayout.LEFT

▶ FlowLayout.CENTER

▶ FlowLayout.RIGHT

▶ FlowLayout.LEADING

▶ FlowLayout.TRAILING



FlowLayout

Example: FlowLayoutDemo



BorderLayout

The default layout for a swing GUI is the BorderLayout.

This layout consists of a center region surrounded by 4 border
regions.



BorderLayout

The regions can be selected using the following constants:

▶ BorderLayout.CENTER

▶ BorderLayout.SOUTH

▶ BorderLayout.EAST

▶ BorderLayout.NORTH

▶ BorderLayout.WEST



BorderLayout

Example: BorderLayoutDemo



GridLayout

GridLayout presents components in a 2D grid.

This class has a constructor to specify the number of rows and
columns in the grid.



GridLayout

Example: GridLayoutDemo



CardLayout

The CardLayout may be used when you need to organize multiple
layouts.

Each layout can be represented on a card with a given index.



CardLayout

The indices are useful for swapping out layouts that contain groups
of visual elements.

Example: CardLayoutDemo



GridBagLayout

The last layout to choose from is GridBagLayout.

This allows for fine-grained control that utilizes relative positioning
and sizing.



GridBagLayout

Like GridLayout, this layout consists of rows and columns.

The difference is that GridBagLayout can have rows with a
different number of columns.



GridBagLayout

The sections in this layout are defined by constraints.

Understanding how to work with constraints is the key to using this
layout properly.



GridBagLayout

Example: GridBagLayoutDemo



Additional Components

Not every Swing GUI will use every component available in the Java
API.

It is not necessary to have an intimate knowledge of the API either.



Additional Components

Spending time looking through the documentation and
implementing individual examples is the best way to learn how to
implement each component.



JFileChooser

One particularly useful task is that of locating a file on a system.

Your program may then perform any necessary operations with the
file.



JFileChooser

Swing provides JFileChooser for navigating the local file system
and selecting a particular file.

There are many configuration options available from filtering file
types to previewing selected images.



JFileChooser

Example: JFileChooserDemo



Creating Modal Dialogs

The Java API provides JDialog for creating modal dialog views.

This class is the most general form of a dialog view and can be fully
customized.



Creating Modal Dialogs

Interaction between the dialog and the rest of the program is no
different than other visual components.



Creating Modal Dialogs

Example: JDialogDemo



Working with Images

Working with images is very common for GUI programs.

There are two common approaches to displaying images.

The first involves overriding paintComponent. The other simply
creates a JLabel object with an icon.



Working with Images

The first approach involves creating a custom component, such as
JPanel, and override paintComponent.

This provides access to a Graphics object needed to use Java’s
rendering methods.



Working with Images

Example: ImageViewDemo



Working with Images

The second method is as simple as loading an image and assigning
it as the icon object for a JLabel object.

BufferedImage img = ...

JLabel imgLabel = new JLabel(new ImageIcon(img));



Model-View-Controller

A common and useful design pattern for GUI development is called
Model-View-Controller (MVC).

MVC adheres to 3 core properties of GUI components:

1. How is the component rendered?

2. How does the component react to the user?

3. What state information does the component contain?



Model-View-Controller

MVC maintains a separation of the model (functionality related to
the data), the view (rendering and layout), and a controller.

The controller is in charge of facilitating interactions between the
interface components and the underlying data models.



Model-View-Controller

The model refers to anything related to data used for the program.

This includes the data class objects as well as any interactions with
data retrieval.

In the TableTopRPG project, a Player would be a model
component.



Model-View-Controller

View components contain code directly related to visual rendering
and interaction between the user and the GUI.

These components should never directly depend on model
implementations to perform retrieve the data for rendering.



Model-View-Controller

The controller binds the model and views together.

It may respond to user interactions with the GUI, triggering an
update to the model component.

It then sends the raw model data to the view components for
rendering.



Model-View-Controller

Example: CharacterCreator


