
CSE 1325 - Object-Oriented Programming
Inheritance

Alex Dillhoff

University of Texas at Arlington



Inheritance in OOP

When designing software for a particular system, it is common to
come across entities that share a subset of behaviors and
properties.

Some of these relationships present themselves naturally. Others
may be the result of a design decision.



Inheritance in OOP
For example, a Car and Motorcycle are specific implementations
of the broader category of Vehicles.



Inheritance in OOP

Inheritance based on a design decision would be creating a general
User class which separates secure information like passwords from
a particular Account class.



Inheritance in OOP

Account inherits from User.



Inheritance in OOP

The simple, yet inefficient, solution would be to copy the shared
code between two classes.

The better solution is to create a class which extends the super
class.



Inheritance in Java

The following code declares a new Account class that is a
subclass of User.

public class Account extends User {

...

}



Inheritance in Java

The new class inherits the members and methods of the super
class, but does not necessarily have direct access to them.

However, the superclass does not have access to any methods and
fields defined in a subclass.



Inheritance in Java

As an example, let’s apply inheritance to the RPG application.

What if we wanted to add a class to represent Non-Player
Characters (NPCs) that the player’s could face up against?



Inheritance in Java

This new class would need many of the attributes that are present
in the Player class so that it could interact with the rules in the
same way.

▶ Name

▶ HP

▶ AC

▶ ...



Inheritance in Java

This class may also include fields and methods that are different
from the Player class.

For example, we might want to include a challenge rating to inform
the player’s about how difficult a particular monster would be in
combat.



Inheritance in Java

With inheritance, we can define a superclass named Creature that
abstracts the shared attributes and methods.

We can then define Player and Monster as subclasses of
Creature.



Inheritance in Java



Inheritance in Java

Example: Refactoring the Player class.



Overriding Methods

When creating subclasses, a common pattern calls for redefining
methods.

In our RPG application, we want Players to benefit from bonuses
differently than Monsters.



Overriding Methods

The Armor Class (AC) value will be calculated based on the
Player’s Dexterity (DEX) value.

In order to implement this difference in the code, we will need to
override the getAc() method in the Player class.



Overriding Methods

Since we do not have access to the private field ac, we need to call
the superclass method getAc() when overriding this method.

public int getAc() {

return super.getAc() + getDex();

}



Overriding Methods

When the method is being overridden, you must specify if you wish
to call the superclass’s method or the current class’s method.

By default, the current class’s method will be called first.



Working with Constructors

Another benefit for the subclass is that the superclass constructors
can be reused without being redefined.

In our example, we set some default stat values for a the Creature
superclass. It would be redundant to redefine those defaults in our
subclass.



Working with Constructors

We can call on that superclass constructor quite easily.

public Monster(String name) {

super(name); // Creature constructor

cr = 1;

}



Working with Constructors

If no superclass constructor is specified, the no-argument
constructor will be called automatically.



Polymorphism

Because Player and Monster both inherit from the same
superclass, they can also be generally represented as Creatures.

This is especially useful when working with Collections like
ArrayList.



Polymorphism

First, let’s look at an example of how objects of these classes can
be used in a general way.

Example: PolymorphismTest.java.



Polymorphism

In the previous example, we showed that a Creature object can
refer to either a Monster or a Player.

This concept is referred to as polymorphism.



Polymorphism

We also observed that the correct toString() method was called
during runtime.

This is enabled through a process called dynamic binding.



Dynamic Binding

How exactly does the compiler know which method to call?

Let’s take the call from the previous example:

Creature c = creatures[0];

c.toString(); // Is it a Player or Monster?



Dynamic Binding

The virtual machine first matches the actual type of c.

If the actual type is a Player, then it will look in the class
definition for a call to toString().



Dynamic Binding

The virtual machine does not exhaustively search through the class
definitions each time.

Instead, it creates a method lookup table that can be quickly
referenced for such calls.



Dynamic Binding

If a definition of toString() does not exist in the Player table, it
will search the superclass of Player.

This continues until it finds the method somewhere in the
inheritance hierarchy.



Casting to a Subclass

We saw that a subclass can automatically be converted to a
superclass reference.

What if we want to access a subclass’s methods again?

We will need to cast it explicitly.



Casting to a Subclass

This can be done the same way we would cast any other type.

Monster m = (Monster) creatures[0];



Casting to a Subclass

However, if the underlying type of creatures[0] is NOT a
Monster, a ClassCastException is thrown.

This exception either needs to be caught or we can use
instanceof.



Casting to a Subclass

Example: Checking a cast with instanceof



Casting to a Subclass

This type of casting can only be done if the types are in the same
inheritance hierarchy.

Most commonly, it will be used before casting from a superclass to
a subclass.



Abstract Classes

A common situation that arises with class hierarchies is that of a
superclass that does not have any specific implementations of
methods or instances.

These classes are abstract.



Abstract Classes

Consider a program that draws different shapes.

A plausible class hierarchy would be one in which many specific
shapes (triangle, circle, etc.) inherit from a general Shape class.



Abstract Classes

One method we might implement in this program is a draw()

method that is overridden for each subclass of Shape.

It may be that the method in the Shape superclass does nothing at
all!



Abstract Classes

Since Shape has no actual implementation, we can declare to be
abstract.

public abstract class Shape {

public abstract void draw();

}



Abstract Classes

Why not forego the abstract class and stick with the
subclass implementations?

Example: Abstract Shape



Abstract Classes

It is not possible to create an instance of an abstract class.

Shape s = new Shape(); // Invalid



Abstract Classes

However, a variable of an abstract can be used to represent a
subclass.

Triangle t = new Triangle();

Shape s = t;



Abstract Classes

Abstract classes can still have concrete instance fields and methods.

This is useful for superclasses that have attributes and methods
shared by many subclasses.



Class Access

It is commonly considered good practice to make all instance fields
private.

Access to the internal representation of an object should be
facilitated via methods.



Class Access

There are, of course, exceptions that require different access.

Access to instance fields and methods can be restricted to classes
within a hierarchy using the protected keyword.



Class Access

WARNING: Features that are marked as protected are also
accessible within the entire package.

It is more common to mark methods as protected than it is to
mark instance fields.



The Object Class

Every class extends the Object class in Java.

It is important to be familiar with a few features defined in this
class.



The Object Class

One of the most important methods to override for custom classes
is the equals() method.

Remember, comparing two objects using == only tests if they are
identical references!



The Object Class

Example: Object Equality



The Object Class

When working with subclasses, the equals() method should first
check the superclass equals() method.

// Returns false if `this` is not equal to `o`

if (!super.equals(o)) return false;



The Java Specification Rules of Equality

The official language specification describes some important
properties that should be followed when overriding the equals()
method.



The Java Specification Rules of Equality

Reflexivity

If x is not null, then x.equals(x) should return true.



The Java Specification Rules of Equality

Symmetry

For any x and y, x.equals(y) should return true if and only if
y.equals(x) returns true.



The Java Specification Rules of Equality

Transitivity

For any x, y, and z, if x.equals(y) is true and y.equals(z) is
true, then x.equals(z) should also be true.



The Java Specification Rules of Equality

Consistency

As long as the objects referred to by x and y remain unchanged,
subsequent calls to x.equals(y) should also remain unchanged.



The Java Specification Rules of Equality

Null Equality

For a non-null x, x.equals(null) should return false.



The Object Class

Since every class extends Object, any class can be cast to Object.

Object myObject = new CustomClass();


