
CSE 1325 - Object-Oriented Programming
Interfaces

Alex Dillhoff

University of Texas at Arlington



Java Interfaces

Abstract classes and methods allow the developer to define a
particular behavior for classes that inherit it.

This is useful in describing what subclasses should do.

This is limited by the fact that Java only supports single inheritance.



Java Interfaces

Luckily, Java provides interfaces, entities that define what a class
should do.

Any class that implements an interface must provide definitions for
those behaviors.



Java Interfaces

Consider the method Arrays.sort(Object[] a).

The documentation states that all elements in the array a must
implement the Comparable interface.



Java Interfaces

The Comparable interface declares a method
int compareTo(T other).

Any class that implements Comparable must provide a
compareTo method.



Java Interfaces

Additionally, compareTo definitions should follow the following rule:

”Returns a negative integer, zero, or a positive integer as this
object is less than, equal to, or greater than the specified object.”

This rule ensures two objects can be ordered.



Java Interfaces

Interface methods are public by default, so there is no need to
specify the keyword.

However, more recent versions of Java have expanded on what
interfaces can do.



Implementing Interfaces

How can we implement interfaces in our own classes?

With the implements keyword.

public class Player implements Comparable



Implementing Interfaces

Then, the required methods must also be defined.

public int compareTo(Player other) {

return name.compareTo(other.name);

}

Now, Player objects can be sorted.



Implementing Interfaces

Example: SortPlayerExample



Implementing Interfaces

By implementing the interface, we have full control over how our
custom objects are sorted.

Since our class implements the interface, any method requiring it
can safely call the compareTo method on our objects.

If our class did not implement it, an exception would be thrown.



Implementing Interfaces

One potential issue to look out for is when working with subclasses.

If a subclass does not implement an interface and an interface
method is called on it, it will fall back to the definition provided by
the superclass (if applicable).



Implementing Interfaces

If a superclass and subclass implement Comparable in their own
way, a collection of mixed objects could result in unexpected output
when sorted.



Interface Properties

Interface variables can be created, but you cannot instantiate a new
object of an interface.

If we assume Player implements Comparable, then the following
is valid.

Player p = new Player();

if (p instanceof Comparable) {

// Do something

}



Creating Interfaces

We can create our own interfaces using the interface keyword.

Let’s look at a basic example: InterfaceExample



Creating Interfaces

Starting with Java 8, interfaces can define a default

implementation.

With Java 9, interfaces may include private methods.

It is recommended to only use these in special circumstances.



Creating Interfaces

Interfaces should be used with the original intent in mind...

only to define what a class should be doing.



Extending Interfaces

Just like classes, interfaces can be extended to define more specific
behaviors.

This is done by simply using the extends keyword.

public interface Report extends Callback



Extending Interfaces

When implementing a sub-interface, the class which implements it
must implement all parent methods as well.

Example: InterfaceExtendExample



Comparison with abstract

This pattern of defining behaviors is similar to that of abstract
methods.

The main difference is that Java only allows single-inheritance, so
only one source of behaviors can be included via inheritance.



Comparison with abstract

In any case, inheritance isn’t a good match for what interfaces
provide.

It is often the case that you want to ensure classes adhere to
specific methods without adding the extra baggage of subclassing.



Default Methods

As of Java 8, an interface can define a default behavior.

This is implemented in practice by using the default keyword.



Default Methods

The benefit to defining a default behavior is that it allows
interfaces to be updated without affecting previous code.



Default Methods

Consider the following scenario:
An application developer uses a custom interface that you
developed as part of an API. Later, you wish to update the
interface to add new methods.

If you declare the new method as usual, the application developer’s
program will break unless they implement the new method in all
classes that implement your interface.



Default Methods

Instead, you should set a default behavior for your new method.

In this way, existing applications do not need to explicitly define this
new method.

If they omit it, the default method will be called.



Default Methods

Example: InterfaceDefaultExample



Multiple Inheritance

Java does not support multiple class inheritance, but the addition
of default methods allows some of that functionality.

A key difference still remains: a class has state information. An
interface does not.



Multiple Inheritance

Having default methods means that classes can implement multiple
interfaces with some defined behavior.

This is about as close to multiple inheritance as we can get in Java.



Multiple Inheritance

If you implement multiple interfaces, it is important to understand
naming conflicts.

Consider a class implementing two interfaces named Interface1

and Interface2.



Multiple Inheritance

Example: MultipleInheritance.java



Custom Comparators

The Comparator interface is another interface that allows for
comparisons when sorting.

It is used by methods such as
Arrays.sort(T[] a, Comparator<? super T> c) to define
custom sort behaviors.



Custom Comparators

What if we want to override the default behavior when sorting
custom objects?

We can define our own custom comparisons by subclassing
Comparator.



Custom Comparators

By creating such classes, we can define custom sorting logic
without interfering with the original interface implementation.

Example: RollInitiative



Cloning Objects

An important concept when dealing with objects is that of shallow
copying versus deep copying.

By default, objects in Java are not copied in memory.
Instead, their reference or address is copied.

This is called a shallow copy.



Cloning Objects

Example: ShallowCopyExample



Cloning Objects

The Object superclass has a clone() method for deep copies,
but this will not work for any subclass.

A subclass must implement the Cloneable interface as well as
override the clone() method.



Cloning Objects

Example: DeepCopyExample



Cloning Objects

There are some subtleties to consider when customizing clone()

for your custom classes.

If your class contains subobjects that are mutable, these subobjects
may need to be deep copied as well.

That is, they must also implement Cloneable and override
clone().



Cloning Objects

If your class contains no subobjects that are mutable, you can
simply call super.clone() in your override of clone().



Cloning Objects

Consider a parent class that overrides clone().

Any subclasses that do not customize clone() will fall back to the
parent implementation.

This may be problematic depending on your usage.



Cloning Objects

Deep copying is not something you may need very often.

It is important to ask yourself if your application even needs to
provide deep copies.

If you can avoid it, stick to shallow copies.



Interfaces

Bonus Example: Clock


