CSE 1325 - Object-Oriented Programming

Introduction

Alex Dillhoff

University of Texas at Arlington



Course Description

Object-oriented concepts, class diagrams, collection classes,
generics, polymorphism, and reusability. Projects involve extensive
programming and include graphical user interfaces and
multithreading.



Object-Oriented Programming

The official course description makes no mention of the specific
language used.

The focus of this course will be on learning the fundamentals of
object-oriented programming in a language-agnostic way.



Object-Oriented Programming

What is object-oriented programming?

In procedural programming, programs are created by breaking
down problems into modular components designed to solve specific
subtasks.

Interfacing with the data is also facilitated through separate
libraries and functions.



Object-Oriented Programming

Object-oriented programming breaks down a solution into
objects which encapsulate some concept.

This is often viewed as a data-driven approach, in which the objects
and actions are defined based on the data.



Object-Oriented Programming

Procedural programming works well for small to medium-sized
projects.

As the complexity and scope of a project grows, it can be difficult
to keep the code organized.

This is not the case for object-oriented programming. Since
variables and functions are defined based on specific concepts, they
are easier to organize.



Object-Oriented Programming

There are many languages which include object-oriented
programming concepts.

The specific language we will use in this course is Java.



Java

The original authors described their design decisions and goals for
the language in a white paper.

The nuances of designing a programming language will be discussed
in a future class, but it is important to review some of the
reasoning which led to the creation of Java.



Simplicity

The authors looked at the complexity, at the time, of languages
such as C++.

This informed their design to include native features that supported
modern programming practices.



Object-Oriented

Java supports object-oriented programming techniques.

These concepts put the focus on the data and interfaces to the
data.



Robust

Java provides interfaces for checking and recovering from run-time
errors.

These features come on top of the usual compile-time checks that a
compiler would provide.



Security

Java is executed through a virtual machine that essentially runs
each program through an isolated "sandbox”.

Additionally, a code signing standard is enacted to digitally sign
code that is known to be trusted.



Architecture-Neutral

Code written in Java compiles to an architecture-netural format
that can further be translated into the target machine code.

This allows any Java code to be executed on any system that
supports the Java runtime system.



Portable

In contrast to C and C++, Java does not have any
implementation-dependent features.

That is, data types and their operators behave the same regardless
of the underlying implementation.



Interpreted

Java even provides a Read-Eval-Print Loop (REPL).

This allows code to be interpreted and executed on the fly.



High-Performance

Through the use of Just-In-Time (JIT) compilation, frequently
executed code can be optimized to reduce the runtime of an
application.

Many advances to JIT compilers have been made over the years.
Today, they are competitive with traditional compilers.



Getting Setup for Java Development

» |nstall the JDK
» Learn the command-line tools
» (Optional) Set up an IDE



Installing the JDK

For this class, we will be using the latest version: Java 20.

It is available from Oracle's website:
https://www.oracle.com/java/technologies/downloads/


https://www.oracle.com/java/technologies/downloads/

Using the Command-Line Tools

To ensure that the setup was successful, we will learn how to use
the tools to compile and run Java programs.

You may use an IDE in this class. However, you must know how to
compile and run programs from the command line.



Compiling Java Programs

First, let's write a simple program.
public class FirstProgram {
public static void main(Stringl] args) {
String msg = "Welcome to CSE1325!";
System.out.println(msg);

for (int 1 = 0; i < msg.length(); i++) {

System.out.print("=");
}

System.out.println();



Compiling Java Programs

Save the program as FirstProgram. java.

By convention, you should name your code files to match the name
of the class.



Compiling Java Programs

To compile the program, use the tool javac.

For example, the previous program can be compiled by typing
javac FirstProgram. java

This generates a file FirstProgram.class.



Running Java Programs

At this point, the program can be run via
java FirstProgram

Note that the postfix .class does not need to be included.



Running Java Programs

Starting with JDK version 11, programs are contained within a
single class file.

That is, the program can be run directly via

java FirstProgram. java



JShell

Java can be interpreted via REPL.

Code can be evaluated using JShell



JShell

To start Jshell, simply type jshell at the prompt.
$ jshell

You can execute Java statements individually.



JShell

JShell Example



Using an IDE

You may use an IDE for this class.

Keep in mind that you should only submit the relevant code files
for each assignment.



Using an IDE

There are several useful IDEs available for Java.

| reccommend Visual Studio Code available at
https://code.visualstudio.com/


https://code.visualstudio.com/

Using an IDE

IDE Setup



