
CSE 1325 - Object-Oriented Programming
Multithreading in Java

Alex Dillhoff

University of Texas at Arlington



Multithreaded Applications

An OS implements multi-tasking by spawning multiple processes.

At a lower level, each process can implement multi-tasking by
spawning multiple threads.



Multithreaded Applications

Multithreading is especially critical in GUI applications.

The rendering thread must not waste any time performing data
operations that require an excessive amount of computation.



Polling

In a single-threaded application, a loop runs continuously and
checks an event queue for the next action to take.

This pattern is referred to as polling.



Polling

The downside to polling is that the thread will waste CPU time
waiting for the next action.

This has the effect of making the application look unresponsive.



Polling

Java provides built-in support for multithreading through several
convenient API calls.

Multithreading allows developers to perform multiple tasks without
interrupting the main application.



Multithreaded Applications

In a single-core system, multiple threads are not able to execute
truly simultaneously.

Instead, the CPU switches between threads to simulate it.



Multithreaded Applications

Even on a single-core system, multithreading is still more desirable
than a single thread.

Instead of waiting for a task to complete, the CPU can simply
switch to another thread that is ready to work.



Multithreaded Applications

In multi-core systems, two threads may truly execute
simultaneously.

At the software level, we are not concerned with how the underlying
architecture handles multiple threads.

We only need to utilize the appropriate API calls.



Synchronization

An important consideration when it comes to multithreading is that
of synchronization.

When multiple threads work with a shared data object, it is
important that one thread does not interfere with the work of
another.



Synchronization

For example, imagine two threads working with a single file.

If both threads attempt to write data to the same file at the same
time, the data could become corrupted.



Synchronization

This is typically handled through the use of synchronization.

Java implements this through the use of what is called a monitor.



Synchronization

When a thread accesses a synchronized object, it enters a monitor
that can only contain a single thread.

Any other thread that needs access to the object must wait until
the monitor is available.

This occurs when the original thread releases a lock and exits the
monitor.



Threads in Java

Multithreading is implemented in Java mainly through the Thread
class.

Java applications that need multithreading will either subclass
Thread or implement Runnable.



Threads in Java

Every Java program begins by executing on the main thread.

From here, other threads can be created and managed as necessary.



Threads in Java

As a general rule of thumb, the main thread should always be the
last thread to finish executing code.

There are several methods available to make sure this is always the
case.



Threads in Java

In the next example, we will look at how to gain access to the main
thread and call Thread methods on it.

Example: MainThreadExample



Creating a New Thread

There are two primary approaches to creating a new thread.

1. Implement the Runnable interface.

2. Extend the Thread class.



Implementing Runnable

When implementing Runnable, you only need to override the run
method.

This object can then be used as an argument to the Thread
constructor.



Implementing Runnable

Example: NewThreadExample



Extending Thread

Extending the Thread class allows full customization over what
happens in the thread.

Other threads can also utilize a form of communication, as we will
see in the next example.



Extending Thread

Example: CustomThreadExample



Extending Thread

Which approach is best?

A good rule of thumb is to only subclass another class if you need
fine-grained control over other methods.

If you only need to implement the run method, stick to
implementing Runnable.



Using Thread Methods

In the previous examples, we used timing to make sure the main
thread will finish last.

This can be achieved regardless of fixed timing through the use of
some useful methods, such as join and isAlive.



Using Thread Methods

Example: MultiThreadsExample



Setting Thread Priorities

All threads are managed by a thread scheduler. An OS will typically
decide which threads to execute before others.

Thread priority can be set in Java through the use of
setPriority(int level), where the level can be any value in
the range [MIN_PRIORITY, MAX_PRIORITY].



Setting Thread Priorities

The default values for the range are [1, 10].

In practice, it is best to keep the threads at their default priority (5).



Synchronization

Threading obviates polling. This means less wasted CPU time.

However, even multithreaded applications may introduce wasted
CPU time.



Synchronization

For example, a producer may have to wait for a consumer before
fetching more data.

This can be streamlined through the use of the methods wait,
notify, and notifyAll.



Synchronization

These methods may only be used within a synchronized context.

The documentation for wait discusses the possibility of a spurious
wakeup.

The solution is to wrap the calls to wait inside of a loop, as we will
see in the next example.



Synchronization

Example: DataLoaderExample



Synchronization

In the previous example, the client fetches the same data repeatedly
while the data loader attempts to update.

The intended use is for the client to wait for new data. We will see
how to fix this in the next example.



Synchronization

Example: DataLoaderFixedExample



Deadlocks

Sometimes, multiple threads may have a circular dependency on an
object or set of objects.

This can lead to an error called a deadlock.



Deadlocks

From wikipedia: P1 has R2 and needs R1. P2 has R1 and needs R2.



Deadlocks

Example: DeadlockExample



Deadlocks

Deadlocks are resolved in various ways including re-ordering the
threads or using calls to join.

A deeper analysis into deadlock solutions is beyond the scope of
this course.



SwingWorker

Thread and Runnable were introduced very early on in the Java
API.

Since the introduction of Swing, a worker class for multithreading
was also introduced to accommodate background tasks in GUI
applications.



SwingWorker

SwingWorker involves 3 different threads: the current thread, a
worker thread, and the Event Dispatch thread.

Executing a SwingWorker object will create the thread immediately
and return the control to the event dispatch thread.



SwingWorker

SwingWorker has the benefit of being able to work in the
background and update the GUI once it is finished.

In the next example, we will implement background file saving using
a Runnable object.



SwingWorker

Example: FileOpThreadExample



SwingWorker

To compare using a Runnable object to implement the background
process, we will look at one last example that uses SwingWorker
instead.

Example: FileOpSwingWorkerExample


