
CSE 5311: Design and Analysis of
Algorithms
Binary Search Trees

Alex Dillhoff

University of Texas at Arlington

1



Binary Trees

Binary trees are a graph-based data structure.

They are defined as a hierarchical tree of nodes in which each
node has at most two sub-nodes.

2



Binary Trees

3



Binary Trees

Tree-based data structures share a few common properties
and definitions:

• The size of a tree T is determined by the total number of
nodes in T.

• The root of a tree T is the starting point of T.
• A leaf node in a tree T is a node that has no sub-nodes.
• The height of a tree T is determined by the length of the
shortest path between the root of T and the lowest leaf
node of T.

4



Binary Trees

Each node in a binary tree contains the following information:

• A reference to the parent node.
• A reference to the left sub-node.
• A reference to the right sub-node.
• A key representing some identifier.
• A value containing the data.

5



Binary Trees

class Node:
def __init__(self, key, value):

self.key = key
self.value = value
self.left = None
self.right = None
self.parent = None

6



Binary Trees

Binary trees are especially useful for sorting and searching
data efficiently.

The data can be as simple as a single scalar value or as
complex as a multi-membered class object as long as a
suitable key can be chosen to represent each node.

7



Constructing a Binary Tree

In general, a binary tree can be constructed in any fashion as
long as each node has at most two sub-nodes.

Although the usefulness of a binary tree comes from utilizing
their hierarchical nature, there is no requirement that the
data need to be sorted in any particular way.

8



Binary Search Trees

To take advantage of the benefits of efficient sorting and
searching, a Binary Search Tree must be used.

A Binary Search Tree is defined by the following property:

If x is a node in a binary search tree and y is a sub-node of x,
then y is a left sub-node if y.key ≤ x.key and y is a right
sub-node if y.key ≥ x.key.

9



Binary Search Trees

10



Operations

There are several operations that can be performed on a
Binary Search Tree.

1. Traversal
2. Search
3. Insertion
4. Deletion
5. Minimum/Maximum
6. Successor/Predecessor

11



Operations - Traversal

Given a binary tree T, there are several different ways to
traverse the nodes of T.

1. Depth First Search (Preorder)
2. Depth First Search (Inorder)
3. Depth First Search (Postorder)
4. Breadth First Search

12



Depth First Search (Preorder)

To perform a preorder DFS, the key of the current node is
printed before moving to the sub-nodes.

def preorder_dfs(n):
if n is not None:

print(n.key)
preorder_dfs(n.left)
preorder_dfs(n.right)

13



Binary Search Trees

14



Depth First Search (Inorder)

To perform a inorder DFS, the key of the current node is
printed between the sub-nodes.

def inorder_dfs(n):
if n is not None:

inorder_dfs(n.left)
print(key)
inorder_dfs(n.right)

15



Binary Search Trees

16



Depth First Search (Inorder)

For a Binary Search Tree, an inorder traversal will print the
items out in order from least to greatest, according to they
key.

This traversal is the key to the efficiency of a Binary Search
Tree.

17



Depth First Search (Postorder)

To perform a postorder DFS, the key of the current node is
printed after moving to the sub-nodes.

def postorder_dfs(n):
if n is not None:

postorder_dfs(n.left)
postorder_dfs(n.right)
print(n.key)

18



Binary Search Trees

19



Breadth First Search

A Breadth First Search prints each level of the tree in order
from top to bottom, left to right.

In this way, the breadth of the layer is explored before moving
to the next level in the height of the tree.

20



Binary Search Trees

21



Operations - Search

Searching a Binary Search Tree involves looking at each node,
starting with the root, until the desired key is found.

If the target value is less than the key, the left sub-node is
traversed. Otherwise, the right sub-node is traversed.

This continues until a leaf node is reached.

22



Operations - Search

def tree_search(x, k):
if x is None or k == x.key:

return x
if k < x.key:

return tree_search(x.left, k)
else:

return tree_search(x.right, k)

23



Binary Search Trees

24



Operations - Minimum

In a BST, the minimum value is the leftmost node.

Finding the minimum is as easy as traversing down the left
branch until a leaf node is reached.

25



Operations - Minimum

def tree_minimum(x):
while x.left is not None:

x = x.left
return x

26



Binary Search Trees

27



Operations - Maximum

In a BST, the maximum value is the rightmost node.

Finding the maximum is as easy as traversing down the right
branch until a leaf node is reached.

28



Operations - Maximum

def tree_maximum(x):
while x.right is not None:

x = x.right
return x

29



Binary Search Trees

30



Operations - Successor

The successor and predecessor operations are useful for the
delete operation.

The successor of a node x is the node with the smallest key
greater than x.key.

If x has a right subtree, then the successor of x is the
minimum of the right subtree.

If x has no right subtree, then the successor of x is the lowest
ancestor of x whose left child is also an ancestor of x. 31



Operations - Successor

def tree_successor(x):
if x.right is not None:

return tree_minimum(x.right)
y = x.parent
while y is not None and x == y.right:

x = y
y = y.parent

return y

32



Binary Search Trees

33



Operations - Predecessor

The predecessor of a node x is the node with the largest key
less than x.key.

If x has a left subtree, then the predecessor of x is the
maximum of the left subtree.

If x has no left subtree, then the predecessor of x is the lowest
ancestor of x whose right child is also an ancestor of x.

34



Operations - Predecessor

def tree_predecessor(x):
if x.left is not None:

return tree_maximum(x.left)
y = x.parent
while y is not None and x == y.left:

x = y
y = y.parent

return y

35



Binary Search Trees

36



Operations - Insertion

Besides searching, inserting a node into a Binary Search Tree
is one of the greatest benefits of using them.

A new node is inserted depending on its key relative to the
tree T.

37



Operations - Insertion
def tree_insert(T, z):

y = None
x = T.root
while x is not None:

y = x
if z.key < x.key:

x = x.left
else:

x = x.right
z.parent = y
if y is None:

T.root = z
elif z.key < y.key:

y.left = z
else:

y.right = z

38



Binary Search Trees

39



Operations - Insertion

The insert operation is easy to implement and comes with the
benefit that the tree T retains the property of a Binary Search
Tree after the item is inserted.

Deleting a node is more complicated and may require
reorganization of the tree.

40



Operations - Deletion

If the node is a leaf, the node can simply be set to NULL.

If the node has a single subnode, the subnode is then
assigned to the parent of the current node.

If the node has two subnodes, the graph must be restructured
depending on the data.

41



Operations - Delete

In the third case, node z has both a left and right subnode.

The first step is to find the successor of z: y.

Since z has 2 subnodes, its successor has no left subnode.
Likewise, its predecessor has no right subnode.

If y is the right subnode of z, replace z by y.

42



Binary Search Trees

43



Operations - Delete

If y is not the right subnode of z, it is somewhere further
down the right branch.

In this case, replace y by its right subnode before replacing z
by y.

The figure below shows the removal of node 12 from the tree
in the figure above.

44



Operations - Delete

45



Operations - Transplant

Even though only 1 node was moved (13 to 12’s old position),
the process of deleting a node actually involves transplanting
a subtree to a new position.

46



Operations - Transplant

def transplant(T, u, v):
if u.parent is None:

T.root = v
elif u == u.parent.left:

u.parent.left = v
else:

u.parent.right = v
if v is not None:

v.parent = u.parent
47



Operations - Tree Delete

In the code above, u is the node to be replaced, and v is the
node to replace it.

Updating v’s left and right subnodes are done in the calling
function tree_delete.

48



Operations - Tree Delete

def tree_delete(T, z):
if z.left is None: # Case 1 and 2

transplant(T, z, z.right)
elif z.right is None: # Also case 1 and 2

transplant(T, z, z.left)
else: # Case 3

y = tree_minimum(z.right) # get successor
if y != z.right:

transplant(T, y, y.right)
y.right = z.right
y.right.parent = y

transplant(T, z, y)
y.left = z.left
y.left.parent = y

49



Operations - Delete

50



Analysis

Insert, delete, and search all run in Θ(h) time, where h is the
height of the tree.

If the tree is balanced, h = Θ(log n), and all operations run in
Θ(log n) time.

If the tree is not balanced, h = Θ(n), and all operations run in
Θ(n) time.

51



Class Exercise

Exercise: Given an unsorted array of n distinct integers,
describe an algorithm that constructs a balanced binary
search tree containing all the integers in the array. What is
the running time of your algorithm?

52


