
Complexity Analysis
CSE 5311: Design and Analysis of Algorithms

Alex Dillhoff

The University of Texas at Arlington



The notation of complexity analysis



The notation of complexity analysis

In the previous lecture …

1



O-notation



O-notation

O-notation, often referred to as ”Big Oh” notation, describes an upper bound on
the behavior of a function.

It really means that the function will not grow faster than the a given rate.

This rate is typically the highest-order term in the function, and is often referred
to as the ”dominant term” or ”dominant function”.

2



O-notation

For example, the function f(n) = 3n2 + 2n+ 1 has a dominant term of n2, and so
we would say that f(n) = O(n2).

We could also accurately describe f(n) as O(n3) since it technically does not grow
at a faster rate than n3, but this is less common as it misleads the reader into
thinking that the function is bounded at n3.

3



Ω-notation



Ω-notation

Ω-notation is used to describe the lower bound on the asymptotic behavior of a
function.

It means that the function grows at least as fast as the given rate.

The function f(n) = 3n2 + 2n+ 1 grows at least as fast as n2, so we would say that
f(n) = Ω(n2). It does not grow as fast as n3, however.

4



Ω-notation

Just like O-notation, we can abuse this definition and say that something that
grows at least as fast as n2 also grows as fast as n.

This would lead the reader to believe that the function is bounded at n, which is
not true.

For this reason, we typically use the tightest bound possible.

5



Θ-notation



Θ-notation

Θ-notation gives a tightly bound characterization of a function’s behavior.

It gives the rate of growth within a constant factor bounded above as well as
constant factor bounded below.

6



Θ-notation

To show that a function is Θ(f(n)), we must show that it is both O(f(n)) and
Ω(f(n)).

Taking our example from above, the function f(n) = 3n2 + 2n+ 1 is Θ(n2).

7



Example: Insertion Sort



Upper bound on Insertion Sort

Let’s put this notation to work and characterize the running time of insertion sort.

We’ll start by writing out the pseudocode for the algorithm:

def insertion_sort(A):
for i in range(1, len(A)):

key = A[i]
j = i - 1
while j >= 0 and A[j] > key:

A[j + 1] = A[j]
j = j - 1

A[j + 1] = key
8



Upper bound on Insertion Sort

From our previous analysis, we already know that the outer loop runs (n− 1)
times (although the loop is checked n times).

This is not dependent on the order of the n inputs either.

The inner loop is dependent on the values of our input.

It could run anywhere between 0 and i− 1 times.

9



Upper bound on Insertion Sort

In the worst case, we saw that it would run n− 1 times as well.

We concluded that the running time of insertion sort is O(n2).

Since this was derived for the worst-case, it is reasonable to say that insertion
sort is O(n2) for all cases.

10



Bonus Example: Selection Sort



Upper bound on Selection Sort

Use a similar analysis to show that the worst-case for selection sort is O(n2).

def selection_sort(A):
for i in range(0, len(A)-1):

min_j = i
for j in range(i + 1, len(A)):

if A[j] < A[min_j]:
min_j = j

A[i], A[min_j] = A[min_j], A[i]

11



Upper bound on Selection Sort

We have already observed that the outer loop iterates n− 1 times.

Even in the best case, the inner loop runs proportional to n times.

This is sufficient to conclude that the running time is Θ(n2) for all cases.

12



Upper bound on Selection Sort

For showing that the worst case is Ω(n2), we could use the same argument as
insertion sort, but we don’t need it.

In any case, the inner loop will run proportional to n times.

It is not dependent on any specific arrangement of the input as selection sort is.

We can conclude that the worst-case is Ω(n2), and so selection sort is Θ(n2).

13



Formal Definition of Asymptotic
Notation



Formal Definition of Asymptotic Notation

Now that we have established some understanding of the notation, let’s define it
formally.

We typically use functions whose domains are over the set of natural or real
numbers.

14



O-notation



O-notation

We previously established that O-notation described as asymptotic upper bound.

For a function g(n),
O(g(n)) = {f(n) : ∃c > 0,n0 > 0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0}.

15



O-notation

Visualization of O-notation (Source: Cormen et al.) 16



O-notation

Given a function f(n) = 3n2 + 200n+ 1000, show that f(n) = O(n2).

The goal is to find positive constants c and n0 such that 3n2 + 200n+ 1000 ≤ cn2

for all n ≥ n0.

Dividing both sides by n2 yields

3+ 200
n +

1000
n2 ≤ c.

17



O-notation

Given a function f(n) = 3n2 + 200n+ 1000, show that f(n) = O(n2).

The goal is to find positive constants c and n0 such that 3n2 + 200n+ 1000 ≤ cn2

for all n ≥ n0.

Dividing both sides by n2 yields

3+ 200
n +

1000
n2 ≤ c.

17



O-notation

This equation has many possible solutions.

Let’s choose n0 = 2, then

3+ 200
2 +

1000
22 = 3+ 100+ 250 = 353 ≤ c.

Therefore, we can conclude that f(n) = O(n2).

18



O-notation

This equation has many possible solutions.

Let’s choose n0 = 2, then

3+ 200
2 +

1000
22 = 3+ 100+ 250 = 353 ≤ c.

Therefore, we can conclude that f(n) = O(n2).

18



Ω-notation



Ω-notation

The notation used to describe an asymptotic lower bound is formally defined as

Ω(g(n)) = {f(n) : ∃c > 0,n0 > 0 such that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0}

19



Ω-notation

Visualization of Ω-notation (Source: Cormen et al.) 20



Ω-notation

Let’s revisit our function from above and show that f(n) = Ω(n2).

The goal is to find positive constants c and n0 such that 3n2 + 200n+ 1000 ≥ cn2

for all n ≥ n0.

Dividing both sides by n2 yields

3+ 200
n +

1000
n2 ≥ c.

21



Ω-notation

Let’s revisit our function from above and show that f(n) = Ω(n2).

The goal is to find positive constants c and n0 such that 3n2 + 200n+ 1000 ≥ cn2

for all n ≥ n0.

Dividing both sides by n2 yields

3+ 200
n +

1000
n2 ≥ c.

21



Ω-notation

This holds when c = 3 and n0 is any positive integer.

To see this, think about what happens to this function as n approaches infinity.

The first term will always be 3, and the second and third terms will approach 0.

Therefore, we can conclude that f(n) = Ω(n2).

22



Θ-notation



Θ-notation

Lastly, the notation used for an asymptotically tight bound is

Θ(g(n)) = {f(n) : ∃c1, c2 > 0,n0 > 0 such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}

23



Θ-notation

Visualization of Θ-notation (Source: Cormen et al.) 24



Two more...



o-notation

There are two less commonly used notations that are worth mentioning.

The first is o-notation, which is used to describe an upper bound that is not
asymptotically tight.

o(g(n)) = {f(n) : ∀c > 0, ∃n0 > 0 such that 0 ≤ f(n) < cg(n) for all n ≥ n0}.

25



o-notation

As an example, the bound on an3 = O(n3) is asymptotically tight, but the bound
on an3 = o(n4) is not.

Using the definition of o-notation, we can see that an3 = o(n4), but an3 ̸= o(n3).

26



ω-notation

Analogous to Ω-notation, ω-notation is used to describe a lower bound that is
not asymptotically tight.

It is defined as
ω(g(n)) = {f(n) : ∀c > 0, ∃n0 > 0 such that 0 ≤ cg(n) < f(n) for all n ≥ n0}.

It is true that an3 = Ω(n3), but an3 ̸= ω(n3).

27



Summary of Notation

• O-notation: ”less than or equal to”
• Ω-notation: ”greater than or equal to”
• Θ-notation: ”equal to”
• o-notation: ”strictly less than”
• ω-notation: ”strictly greater than”

28



Function Properties



Function Properties

The following properties are useful when analyzing the asymptotic behavior of
functions.

29



Transitivity

Transitivity

• If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).
• If f(n) = Ω(g(n)) and g(n) = Ω(h(n)), then f(n) = Ω(h(n)).
• If f(n) = Θ(g(n)) and g(n) = Θ(h(n)), then f(n) = Θ(h(n)).

30



Reflexivity

Reflexivity

• f(n) = O(f(n))
• f(n) = Ω(f(n))
• f(n) = Θ(f(n))

31



Symmetry

Symmetry

f(n) = Θ(g(n)) if and only if g(n) = Θ(f(n)).

32



Transpose Symmetry

Transpose Symmetry

f(n) = O(g(n)) if and only if g(n) = Ω(f(n)).

33



Common Functions



Common Functions

Common functons used in complexity analysis (Source: Wikipedia) 34



Class Exercise

Let’s look at one more algorithm: Bubble sort

1. Write out the pseudocode for bubble sort.
2. Analyze the running time of bubble sort in the best case, worst case, and

average case.

35



Complexity Analysis

BONUS: Visualization of Sorting Algorithms

36

https://www.youtube.com/watch?v=kPRA0W1kECg

	The notation of complexity analysis
	O-notation
	-notation
	-notation
	Example: Insertion Sort
	Bonus Example: Selection Sort
	Formal Definition of Asymptotic Notation
	O-notation
	-notation
	-notation
	Two more...
	Function Properties
	Common Functions

