CSE 5311: Design and Analysis of
Algorithms

Dynamic Programming

Alex Dillhoff

University of Texas at Arlington

Dynamic Programming

Dynamic programming is a technique for solving problems by
breaking them down into simpler subproblems, very much like
divide and conquer algorithms.

Subproblems are designed in such a way that they do not need to
be recomputed.

Dynamic Programming

A dynamic programming solution can be applied if the problem has
the following features:

e Optimal substructure: An optimal solution can be
constructed by optimal solutions to the subproblems.

e Overlapping subproblems: The problem can be broken
down into subproblems which can be reused.

Dynamic Programming

Fibonacci sequence

e Optimal substructure: the value of the sequence at any
index is the sum of the values at the two previous indices.
¢ Overlapping subproblems: the value of the sequence at any

index is used in the calculation of the values at the two
subsequent indices.

Dynamic Programming

A recursive solution to the Fibonacci sequence will have exponential
time complexity.

A dynamic programming solution will have linear time complexity.

Dynamic Programming

Two main approaches to dynamic programming. . .

1. Memoization (top-down): involves writing a recursive
solution that stores each sub-solution in a table so that it can

be reused.
2. Tabulation (bottom-up): involves solving the problem by
filling in a table of subproblems from the bottom up.

Dynamic Programming

In either case, the four steps of dynamic programming are the same:

1. Identify subproblems so that the problem can be broken
down.

Dynamic Programming

In either case, the four steps of dynamic programming are the same:

1. Identify subproblems so that the problem can be broken
down.

2. Solve the subproblems following an optimal solution.

Dynamic Programming

In either case, the four steps of dynamic programming are the same:

1. Identify subproblems so that the problem can be broken
down.
2. Solve the subproblems following an optimal solution.

3. Store the solutions to avoid redundant computation.

Dynamic Programming

In either case, the four steps of dynamic programming are the same:

1. Identify subproblems so that the problem can be broken
down.

2. Solve the subproblems following an optimal solution.

3. Store the solutions to avoid redundant computation.

4. Combine solutions from the subproblems to solve the

original problem.

Rod Cutting

Rod Cutting

Given a rod of length n and table of prices p; for i =1,2,...,n,
determine the maximum revenue r, that can be obtained by cutting
up the rod and selling the pieces.

Length |1|234|5 |6 |7 |89
Price |1[5|8|9 10|17 |17 20|24

Rod Cutting

9 1 8 5 5 8 1
7)))) D) (D 0D D05
(a) (b) (c) (d)

1 1 5 1 5 1 5 1 1 1 1 1 1
WA DAY, D \ :' j)' v { \ j)‘D WA \ ')‘-.J_;' A \ A
(e) (f) (2) (h)

8 different ways to cut a rod of length 4 (Cormen et al.).

Rod Cutting

The maximum revenue for a rod of length n can be determined by
the following optimization problem:

rn = maX(pn,r]_ + rn—1, 2 + Frn—2,.-.,r-1 + r1)7

where r; is the maximum revenue for a rod of length i.

10

Rod Cutting

The maximum revenue for a rod of length n can be determined by
solving the subproblems for rods of length / for i =1,2,...,n—1.

11

Rod Cutting

rn = max(plhrl + rn—1, 2 + Frn—2,...,r-1 + r1)7

e Each of the terms r; in the equation implies a recursive
solution to the problem.

e Solving this recursively would lead to many redundant
computations.

e For example, r; is computed at least twice in the equation

above.

12

Rod Cutting

This recursion is more compactly written as

Cha E%Xn(p" + ro—i)-

13

Rod Cutting

This problem has optimal substructure.

If we cut the rod into smaller subsections, we can recursively solve
the subproblems and combine them.

14

Rod Cutting

def cut_rod(p, n):
if n ==
return O
q = —float('inf')
for i in range(l, n+1):
q = max(q, p[i] + cut_rod(p, n-i))

return q

15

Rod Cutting Analysis

If T(n) is a recurrence that represents the number of times
cur_rod is called recursively, then we can write the following
recurrence relation:

16

Rod Cutting Analysis

Using the substitution method, we can show that T(n) = 2".

n—1
T(n)=1+)» 2
j=0

=1+(2"—1)
= 2",

17

Memoization

To solve this with dynamic programming, the goal is to make sure
that each subproblem is computed only once.

18

Memoization

To solve this with dynamic programming, the goal is to make sure
that each subproblem is computed only once.

This is accomplished by saving the result of each
subproblem in a table so that it can be reused.

This does incur a space complexity of O(n), but it reduces the time
complexity to O(n?).

18

Memoization

Process

e The solution requires a small modification to the recursive
algorithm.

e When the solution to a subproblem is required, the table is
first checked for a stored solution.

e If the solution is not found, the subproblem is solved
recursively and the solution is stored in the table.

19

Memoization

def memoized_cut_rod(p, n):
r = [-float('inf') for

return memoized_cut_rod_aux(p, n, r)

in range(n+1)]

def memoized_cut_rod_aux(p, n, r):
if r[n] >= 0:
return r[n]
if n ==
q=20
else:
q = -float('inf')

for i in range(1l, n+1):

q = max(q, pl[i] + memoized_cut_rod_aux(p, n-i, r))
r[n] = q

20
return q

Memoization Analysis

The algorithm starts off with a call to memoized_cut_rod which
initializes the table r and then calls memoized_cut_rod_aux.

The table r is initialized with —oo so that we can check if a
solution has been computed for a subproblem.

21

Memoization Analysis

Each subproblem is solved only once, leading to O(1) lookups after
that.

The time complexity of this solution is O(n?).

22

Tabulation

The other dynamic programming solution is to first sort the
subproblems by their size, solve the smaller ones first, and build up
to the larger ones.

This is called tabulation and the time complexity of this solution is

also O(n?).

23

Tabulation

def bottom_up_cut_rod(p, n):
r = [0 for
for j in range(1l, n+1):

q = -float('inf"')
for i in range(1l, j+1):

q = max(q, pli]l + r[j-il)
r[j]l = q

return r[n]

in range(n+1)]

24

Tabulation

The first for loop effectively sorts the problem by size.

It starts with a cut of size 1 and builds up to a cut of size n.

23

Subproblem Graphs

Subproblem graphs offer a concise way to visualize the subproblems
and their dependencies.

Consider the rod cutting problem with n = 4.

26

Subproblem Graphs

— e DO e Lo e

= =

Subproblem graph for the rod cutting problem (Cormen et al.). -

Subproblem Graphs

Subproblem n = 4 is dependent on subproblems n = 3, n = 2, and

n=1.

The bottom-up approach follows this dependency by ensuring that
the subproblems are solved in the correct order.

28

Subproblem Graphs

Besides serving as a helpful visualization, depicting the problem
using a DAG can also help to identify the time complexity of the
problem.

This is the sum of the time needed to solve each subproblem.

29

Subproblem Graphs

Each problem of size n requires n — 1 subproblems to be solved,
and each subproblem of size n — 1 requires n — 2 subproblems to be

solved.

This leads to a time complexity of O(n?).

30

Reconstructing a Solution

The two dynamic programming solutions above return the
maximum revenue that can be obtained by cutting up the rod.

However, they do not return the actual cuts that should be
made.

This can be done by modifying the algorithms to store the cuts that
are made.

31

Reconstructing a Solution

def extended_bottom_up_cut_rod(p, n):
[0 for
[0 for
for j in range(l, n+1):
q = -float('inf')
for i in range(1, j+1):
if q < pli] + r([j-i]:
q = plil + r[j-i]
s[jl =1
r[(jl = q

return r, s

r in range(n+1)]

s in range(n+1)]

32

Reconstructing a Solution

def print_cut_rod_solution(p, n):
r, s = extended_bottom_up_cut_rod(p, n)
while n > O:
print(s[n])
n -= s[n]

83

Reconstructiong a Solution

In the bottom-up approach, the table s is used to store the size of
the first piece to cut off.

The function print_cut_rod_solution uses this table to print
the cuts that should be made.

34

Matrix-chain Multiplication

Matrix-chain Multiplication

Given a sequence of matrices Ay, Ay, ..., A,, where the dimensions
of matrix A; are p,_1 X p;, determine the most efficient way to
multiply the matrices.

The problem is to determine the order in which the matrices should
be multiplied so that the number of scalar multiplications is
minimized.

85

Matrix-chain Multiplication

Consider three matrices A € R10x100 B R100x5 344 C e R>*90,
Scalar multiplications required for

e (AB)C is 10 x 100 x 5+ 10 x 5 x 50 = 7500 and
e A(BC) is 10 x 100 x 50 + 100 x 5 x 50 = 75000.

36

Matrix-chain Multiplication

e Matrix multiplication is associative, so the order in which the
matrices are grouped does not matter.

e The key to solving this problem is to find the most efficient
way to group the matrices.

e The first part of the solution is to determine the number of
possible groupings, or parenthesizations.

37

Determining Parenthesizations

The number of possible parenthesizations of a chain of n matrices
is given by P(n). When n > 2, the number of possible
parenthesizations is given by

P(n) = Z_: P(K)P(n — k).

38

Dynamic Programming Solution

Cormen et al. suggest a 4 step process to construct a dynamic
programming solution to the matrix-chain multiplication problem:

1. Structure of an optimal solution
2. Recursive solution

3. Compute the optimal costs

4

. Computing the optimal solution

39

Optimal Substructure

What is the optimal substructure of this problem?

Consider matrix-chain sequence A;; = AjAi 1+ A;.

If we split the sequence at k, then the optimal solution to the
problem is the optimal solution to the subproblems A;.x and A, 1.

40

Optimal Substructure

The number of scalar multiplications required to compute A;; is the
sum of the number of scalar multiplications required to compute
Ai:k and Ak+1:j

combined with

41

Optimal Substructure

The number of scalar multiplications required to compute A;; is the
sum of the number of scalar multiplications required to compute
Ai:k and Ak+1:j

combined with

the number of scalar multiplications required to compute the
product of the two subproblems.

41

Optimal Substructure

How can we ensure that there is not a more optimal
grouping of A, where i < h< k and k </ <7

42

Optimal Substructure

How can we ensure that there is not a more optimal
grouping of A, where i < h< k and k </ <7

The answer lies in evaluating all possible splits.

42

Recursive Solution

What is the cost of an optimal solution to the problem?

We must first compute the minimum cost of parenthesizing A;.; for
1<i<j<n.

43

Recursive Solution

Let m[i, j] be the minimum number of scalar multiplications needed
to compute A, ;.

Starting with the base case, m[i, i] is the cost to compute the
multiplication of a single matrix, which is 0.

Assuming optimal subproblems are chosen,
m[i,j] = m[i, k] + m[k 4+ 1, j] + pi—1pxpj, where the last term is the
cost of multiplying Aj.xAk11.;.

44

Recursive Solution

All possible splits must be evaluated: how many are there?

Omitting the first and last matrices, there are j — i possible splits.

45

Recursive Solution

We can now define the optimal solution in terms of the following
recursion:

mli, j] = min{mli, k] + mlk + 1.j] + pi1pep; i < k < j}.

46

Storing the Solutions

This is no better than the brute-force method until we figure out
how to select the optimal subproblems and store their solutions.

How can we optimally select k?

47

Storing the Solutions

How can we optimally select k?

A bottom-up approach involves computing the cost of all possible
combinations of the n matrices and building up from there.

This requires O(n?) memory to store both the costs m[i, j] as well
as the value of k that splits them s/, j].

48

Storing the Solutions

def matrix_chain_order(p):
n = len(p) - 1

m = [[0 for _ in range(n)] for _ in range(n)]
s = [[0 for _ in range(n)] for _ in range(n)]
for 1 in range(2, n+1): # chain length
for i in range(l, n-1+2): # start indezx
j=1i+1-1 # end index

m[i] [j] = float('inf"')
for k in range(i, j):
q = m[i][k] + m[k+1][j] + pli-1]*p[kl*p[j]
if q < m[il[j]:
m[il[j] = q # save the cost
s[i1[j]

k # save the wndex

return m, s
49

Storing the Solutions

e This computes the cost of all possible combinations of the n
matrices and stores the value of k that splits them.

e The outer-most for loop controls the length of the chain
being evaluated.

e It starts at 2 since the cost of a length 1 chain is 0.
e Intuition tells us that the triply-nested for loop has a time

complexity of O(n?).

50

Storing the Solutions

This algorithm computes the cost in ascending order of chain
length.

e When | = 2, the cost of all chains of length 2 is computed.

e When [= 3, the cost of all chains of length 3 is computed,
and so on.

e The recursion in the inner-most nested loop will only ever
access the entries in m which have been previously computed.

51

Reconstructing a Solution

We now have a solution which generates the optimal number of
scalar multiplications needed for all possible combinations of the n
matrices.

52

Reconstructing a Solution

We now have a solution which generates the optimal number of
scalar multiplications needed for all possible combinations of the n
matrices.

We do not yet have a solution which tells us the order in which the
matrices should be multiplied: this information is held in s,
which records the value of k that splits the chain.

52

Reconstructing a Solution

def print_optimal_parens(s, i, j):

if 1 == j
print(f"A_{i}", end="")

else:
print("(", end="")
print_optimal_parens(s, i, s[i][j])
print_optimal_parens(s, s[i] [j]1+1, j)
print(")", end="")

53

Reconstructing a Solution

Figure 14.5 The m and s tables computed by MATRIX-CHAIN-ORDER for n = 6 and the follow-
ing matrix dimensions:

matrix | Ay A As Ay As Ag
dimension | 30x35 35 x15 15 x5 5x10 10 x20 20 x25

Stored tables from calling Matrix-Chain-Order (Cormen et al.). 54

Reconstructing a Solution

First call is to print_optimal_parens(s, 1, 6).

This recursively calls print_optimal_parens(s, 1, 3) and
print_optimal_parens(s, 4, 6).

55

Reconstructing a Solution

Second call: print_optimal_parens(s, 1, 3)

e This recursively calls print_optimal_parens(s, 1, 1) and
print_optimal_parens(s, 2, 3).

e This first call has i == j, so it prints A;.
e The second call prints (AyAs).

e The initial call already set up the first set of parenthesis, so
the intermediate result is ((A1(A243)) - -).

56

Reconstructing a Solution

Third call: print_optimal_parens(s, 4, 6)

e This recursively calls print_optimal_parens(s, 4, 5) and
print_optimal_parens(s, 6, 6).

e This will recursively call print_optimal_parens(s, 4, 4)
and print_optimal_parens(s, 5, 5).

e This produces (A4As) from the first subcall and Ag from the
second subcall.

e The intermediate result is now (- - - ((A4As5)Ag)).

57

Reconstructing a Solution

Putting it all together

Combining these results yields

((A1(A2A3))((AaAs) As))-

This is the optimal parenthesization of the matrix chain
A1 Ay A3 AL A5 Ag.

58

Applying Dynamic Programming

Applying Dynamic Programming

As shown in previous examples, determining the optimal
substructure is the first step in formulating a dynamic
programming solution.

In most cases, this comes from understanding the problem itself
well: it is the result of a natural way of analysis and decomposition
of the problem.

59

Determining Optimal Substructure

Determining the optimal substructure of a problem can be
accomplished by following the steps below.

1. Show that a solution to a problem requires making a choice,
like where to cut in the rod cutting problem.

60

Determining Optimal Substructure

Determining the optimal substructure of a problem can be
accomplished by following the steps below.

1. Show that a solution to a problem requires making a choice,
like where to cut in the rod cutting problem.

2. Assume that you are given an optimal choice.

60

Determining Optimal Substructure

Determining the optimal substructure of a problem can be
accomplished by following the steps below.

1. Show that a solution to a problem requires making a choice,
like where to cut in the rod cutting problem.

2. Assume that you are given an optimal choice.

3. ldentify the subproblems that result from this choice.

60

Determining Optimal Substructure

Determining the optimal substructure of a problem can be
accomplished by following the steps below.

1. Show that a solution to a problem requires making a choice,
like where to cut in the rod cutting problem.

2. Assume that you are given an optimal choice.
3. ldentify the subproblems that result from this choice.

4. Show that solutions to these subproblems are optimal.

60

Determining Optimal Substructure

In the last step, we are typically looking for a contradiction.

The assumption of step 2 means that if we end up finding a more
optimal solution to a subproblem, then the original choice was not

optimal.
The result is that we have a better overall solution.

61

Determining Optimal Substructure

e The efficiency of a solution depends on the number of
subproblems times the number of choices we have for each
subproblem.

e |t is better to start with a simple case and expand outward as
necessary.

e Using a subproblem graph is a great way to visualize the
subproblems and their dependencies.

62

Counter-Example: The Longest Simple Path

Consider the following problems which first appear to have optimal
substructure.

1. Shortest path: find a path u ~» v with the fewest edges
without cycles.

2. Longest simple path: find a path u ~» v with the most
edges without cycles.

63

Counter-Example: The Longest Simple Path

The first problem has optimal substructure.

e Suppose that the shortest path u ~> v is given by p.

64

Counter-Example: The Longest Simple Path

The first problem has optimal substructure.

e Suppose that the shortest path u ~> v is given by p.

e Given some intermediate vertex w, the optimal path from

u ~~> w is given by p; and the optimal path from w ~~ v is
given by p».

64

Counter-Example: The Longest Simple Path

The first problem has optimal substructure.

e Suppose that the shortest path u ~> v is given by p.

e Given some intermediate vertex w, the optimal path from
u ~~> w is given by p; and the optimal path from w ~~ v is
given by p».

e If there were a shorter path p; from u ~~» w then we could
replace p; with it and get a total path with fewer edges.

64

Counter-Example: The Longest Simple Path

Why does that argument reinforce the idea of optimal
substructure?

65

Counter-Example: The Longest Simple Path

Why does that argument reinforce the idea of optimal
substructure?

By showing that the optimal solution to a subproblem is the
optimal solution to the original problem.

This argument becomes clearer as we consider the longest simple
path problem.

65

Counter-Example: The Longest Simple Path

H.
QHF

\) [

-

Longest simple path problem (Cormen et al.).

66

Counter-Example: The Longest Simple Path

The path g — r — t is the longest simple path from g to t.
Keep in mind that the problem is to find a simple path with

the most edges. If the substructure is optimal, then the
subpaths must also exhibit maximal edges.

67

Counter-Example: The Longest Simple Path

The subpath g ~» r in this case is simply g — r, but the longest
simple path fromgtorisq—s—t—r.

Therefore, the subpath g ~~ r is not optimal.

This is a counter-example to the idea that the longest simple path
problem has optimal substructure.

68

Counter-Example: The Longest Simple Path

The longest simple path problem does not have independent
subproblems.

Consider a path from g to t.

This could be broken down into subproblem g ~~ r and r ~ t.

69

Counter-Example: The Longest Simple Path

For g ~» r, we have g s —t —r.

e This subproblem is dependent on s and t, so we cannot use
them in the second subproblem r ~~ t without forming a path
that is not simple.

70

Counter-Example: The Longest Simple Path

For g ~» r, we have g s —t —r.

e This subproblem is dependent on s and t, so we cannot use
them in the second subproblem r ~~ t without forming a path
that is not simple.

e Specifically, the first subproblem includes t, so the second
subproblem cannot include t.

70

Counter-Example: The Longest Simple Path

For g ~» r, we have g s —t —r.

e This subproblem is dependent on s and t, so we cannot use
them in the second subproblem r ~~ t without forming a path
that is not simple.

e Specifically, the first subproblem includes t, so the second
subproblem cannot include t.

¢ However, the second subproblem MUST include t.

70

Using Overlapping Subproblems

Do not confuse the idea of overlapping subproblems with the
need for the subproblems to be independent.

e Subproblems are independent if they do not share resources.

e Overlapping subproblems means that a subproblem may
require the result of another independent subproblem.

e This is the case in the rod cutting problem, for example.

71

Using Overlapping Subproblems

A desirable trait of any recursive problem is that it have a small
number of unique subproblems.

The running time of such a solution is dependent on the number of
subproblems, so having more of them will naturally lead to a less
efficient solution.

72

Longest Common Subsequence

Longest Common Subsequence

A longest common subsequence (LCS) of two input sequences

X = (x1,%,...,Xm) and Y = (y1, ¥, ..., ¥n) is a sequence

Z = (z1,2,...,2) such that Z is a subsequence of both X and Y
and k is as large as possible.

73

Longest Common Subsequence

For example, given X = (A, B, C,B,D, A, B) and
Y =(B,D,C,A B, A), the LCSis (B, C,A,B).

74

Longest Common Subsequence

The subsequence is not necessarily consecutive!

A subsequence Z is common to a sequence X if it corresponds to a
strictly increasing sequence of indices such that x; = z;.

75

Naive Solution

How would we solve this problem using a brute-force
method?

We could generate all possible subsequences of X and Y and then

compare them.

This would require O(n2™) time.

76

Dynamic Programming Solution

Following the four step process, we can formulate a dynamic
programming solution to the LCS problem.

Step 1 is to determine the optimal substructure of the problem.

7

Optimal Substructure

Let X = (x1,%0, ..., %Xm) and Y = (y1,¥o,...,¥n). Let
Z={z1,2,...,2) be an LCS of X and Y.

e If x,, = y,, then z, = x,,, = y, and Z,_1 is an LCS of X,,,_1 and
Y._1.

o If x,, # y, and zx # X, then Z is an LCS of X, ; and Y.

o If x,, # vy, and zx # y,, then Z is an LCS of X and Y,,_;.

78

Optimal Substructure

Consider two sequences (words): rocinante and canterbury.

e The longest common subsequence is " cante”.

e Since the last characters of the two original words do not
match, we can remove the last character from either word and
find the LCS of the two remaining words.

e This implies that we could have found the LCS of the two
original words by finding the LCS of a smaller subproblem.

79

Optimal Substructure

What if the two words had the same last character?

80

Optimal Substructure

What if the two words had the same last character?

The LCS of the shorter strings is the same as the LCS of the
original strings with the last character removed.

80

Recursive Solution

The next step is to write a recursive solution to the problem.

Given the substrucure just presented, a bottom-up approach seems
intuitive.

Starting with indices i = 0 and j = 0 which indicate the length of
the current strings X; and Yj, increase the length and compute the
LCS as we go.

81

Recursive Solution

Define c[i,] as the LCS length of X; and Y.

The goal is to compute ¢[m, n], where m and n are the lengths of
X and Y, respectively.

0 ifi=0o0r =0,
clijjl=<cli—1,j—-1]+1 if i,/ >0 and x; = yj,
max(c[i — 1,/],c[i,j —1]) if i,j > 0 and x; # y;.

82

Recursive Solution

The LCS of "atom” and "ant” is "at".
The following tree shows the recursive calls to each subproblem.

A dashed line indicates that the subproblem has already been
solved.

83

Recursive Solution

/ \4.2
/ \ PN
/

3 3.2 4,1

RN -
’ B .
v - P
’ “ P
. . .
. .

2, 31 / . 3,1 4,0

SN N

3,0

I\J

12/2
A

0, 1,1 1,2

21 ,
LY LY
, \

0,0 ! : 11 2,0

Recursive calls to the LCS problem (Cormen et al.). 84

Storing the Solutions

The LCS problem has ©(mn) distinct subproblems, so storing the
solutions to these subproblems will allow us to avoid redundant
computation.

A dynamic programming solution goes as follows:

1. Store the lengths of the LCS of the prefixes of X and Y in a
table c.

2. Additionally store the solution to the subproblems in a table b
so that we can reconstruct the LCS.

3. The entries are filled in a row-major order. o5

Storing the Solutions

Example: Ics.py

86

	Rod Cutting
	Matrix-chain Multiplication
	Applying Dynamic Programming
	Longest Common Subsequence

