
CSE 5311: Design and Analysis of

Algorithms

Dynamic Programming

Alex Dillhoff

University of Texas at Arlington

1



Dynamic Programming

Dynamic programming is a technique for solving problems by

breaking them down into simpler subproblems, very much like

divide and conquer algorithms.

Subproblems are designed in such a way that they do not need to

be recomputed.

2



Dynamic Programming

A dynamic programming solution can be applied if the problem has

the following features:

� Optimal substructure: An optimal solution can be

constructed by optimal solutions to the subproblems.

� Overlapping subproblems: The problem can be broken

down into subproblems which can be reused.

3



Dynamic Programming

Fibonacci sequence

� Optimal substructure: the value of the sequence at any

index is the sum of the values at the two previous indices.

� Overlapping subproblems: the value of the sequence at any

index is used in the calculation of the values at the two

subsequent indices.

4



Dynamic Programming

A recursive solution to the Fibonacci sequence will have exponential

time complexity.

A dynamic programming solution will have linear time complexity.

5



Dynamic Programming

Two main approaches to dynamic programming. . .

1. Memoization (top-down): involves writing a recursive

solution that stores each sub-solution in a table so that it can

be reused.

2. Tabulation (bottom-up): involves solving the problem by

filling in a table of subproblems from the bottom up.

6



Dynamic Programming

In either case, the four steps of dynamic programming are the same:

1. Identify subproblems so that the problem can be broken

down.

2. Solve the subproblems following an optimal solution.

3. Store the solutions to avoid redundant computation.

4. Combine solutions from the subproblems to solve the

original problem.

7



Dynamic Programming

In either case, the four steps of dynamic programming are the same:

1. Identify subproblems so that the problem can be broken

down.

2. Solve the subproblems following an optimal solution.

3. Store the solutions to avoid redundant computation.

4. Combine solutions from the subproblems to solve the

original problem.

7



Dynamic Programming

In either case, the four steps of dynamic programming are the same:

1. Identify subproblems so that the problem can be broken

down.

2. Solve the subproblems following an optimal solution.

3. Store the solutions to avoid redundant computation.

4. Combine solutions from the subproblems to solve the

original problem.

7



Dynamic Programming

In either case, the four steps of dynamic programming are the same:

1. Identify subproblems so that the problem can be broken

down.

2. Solve the subproblems following an optimal solution.

3. Store the solutions to avoid redundant computation.

4. Combine solutions from the subproblems to solve the

original problem.

7



Rod Cutting



Rod Cutting

Given a rod of length n and table of prices pi for i = 1, 2, . . . , n,

determine the maximum revenue rn that can be obtained by cutting

up the rod and selling the pieces.

Length 1 2 3 4 5 6 7 8 9

Price 1 5 8 9 10 17 17 20 24

8



Rod Cutting

8 different ways to cut a rod of length 4 (Cormen et al.).

9



Rod Cutting

The maximum revenue for a rod of length n can be determined by

the following optimization problem:

rn = max(pn, r1 + rn−1, r2 + rn−2, . . . , rn−1 + r1),

where ri is the maximum revenue for a rod of length i .

10



Rod Cutting

The maximum revenue for a rod of length n can be determined by

solving the subproblems for rods of length i for i = 1, 2, . . . , n − 1.

11



Rod Cutting

rn = max(pn, r1 + rn−1, r2 + rn−2, . . . , rn−1 + r1),

� Each of the terms ri in the equation implies a recursive

solution to the problem.

� Solving this recursively would lead to many redundant

computations.

� For example, r1 is computed at least twice in the equation

above.

12



Rod Cutting

This recursion is more compactly written as

rn = max
1≤i≤n

(pi + rn−i).

13



Rod Cutting

This problem has optimal substructure.

If we cut the rod into smaller subsections, we can recursively solve

the subproblems and combine them.

14



Rod Cutting

def cut_rod(p, n):

if n == 0:

return 0

q = -float('inf')

for i in range(1, n+1):

q = max(q, p[i] + cut_rod(p, n-i))

return q

15



Rod Cutting Analysis

If T (n) is a recurrence that represents the number of times

cur_rod is called recursively, then we can write the following

recurrence relation:

T (n) = 1 +
n−1∑
j=0

T (j).

16



Rod Cutting Analysis

Using the substitution method, we can show that T (n) = 2n.

T (n) = 1 +
n−1∑
j=0

2j

= 1 + (2n − 1)

= 2n.

17



Memoization

To solve this with dynamic programming, the goal is to make sure

that each subproblem is computed only once.

This is accomplished by saving the result of each

subproblem in a table so that it can be reused.

This does incur a space complexity of O(n), but it reduces the time

complexity to O(n2).

18



Memoization

To solve this with dynamic programming, the goal is to make sure

that each subproblem is computed only once.

This is accomplished by saving the result of each

subproblem in a table so that it can be reused.

This does incur a space complexity of O(n), but it reduces the time

complexity to O(n2).

18



Memoization

Process

� The solution requires a small modification to the recursive

algorithm.

� When the solution to a subproblem is required, the table is

first checked for a stored solution.

� If the solution is not found, the subproblem is solved

recursively and the solution is stored in the table.

19



Memoization

def memoized_cut_rod(p, n):

r = [-float('inf') for _ in range(n+1)]

return memoized_cut_rod_aux(p, n, r)

def memoized_cut_rod_aux(p, n, r):

if r[n] >= 0:

return r[n]

if n == 0:

q = 0

else:

q = -float('inf')

for i in range(1, n+1):

q = max(q, p[i] + memoized_cut_rod_aux(p, n-i, r))

r[n] = q

return q
20



Memoization Analysis

The algorithm starts off with a call to memoized_cut_rod which

initializes the table r and then calls memoized_cut_rod_aux.

The table r is initialized with −∞ so that we can check if a

solution has been computed for a subproblem.

21



Memoization Analysis

Each subproblem is solved only once, leading to O(1) lookups after

that.

The time complexity of this solution is O(n2).

22



Tabulation

The other dynamic programming solution is to first sort the

subproblems by their size, solve the smaller ones first, and build up

to the larger ones.

This is called tabulation and the time complexity of this solution is

also O(n2).

23



Tabulation

def bottom_up_cut_rod(p, n):

r = [0 for _ in range(n+1)]

for j in range(1, n+1):

q = -float('inf')

for i in range(1, j+1):

q = max(q, p[i] + r[j-i])

r[j] = q

return r[n]

24



Tabulation

The first for loop effectively sorts the problem by size.

It starts with a cut of size 1 and builds up to a cut of size n.

25



Subproblem Graphs

Subproblem graphs offer a concise way to visualize the subproblems

and their dependencies.

Consider the rod cutting problem with n = 4.

26



Subproblem Graphs

Subproblem graph for the rod cutting problem (Cormen et al.).
27



Subproblem Graphs

Subproblem n = 4 is dependent on subproblems n = 3, n = 2, and

n = 1.

The bottom-up approach follows this dependency by ensuring that

the subproblems are solved in the correct order.

28



Subproblem Graphs

Besides serving as a helpful visualization, depicting the problem

using a DAG can also help to identify the time complexity of the

problem.

This is the sum of the time needed to solve each subproblem.

29



Subproblem Graphs

Each problem of size n requires n − 1 subproblems to be solved,

and each subproblem of size n− 1 requires n− 2 subproblems to be

solved.

This leads to a time complexity of O(n2).

30



Reconstructing a Solution

The two dynamic programming solutions above return the

maximum revenue that can be obtained by cutting up the rod.

However, they do not return the actual cuts that should be

made.

This can be done by modifying the algorithms to store the cuts that

are made.

31



Reconstructing a Solution

def extended_bottom_up_cut_rod(p, n):

r = [0 for _ in range(n+1)]

s = [0 for _ in range(n+1)]

for j in range(1, n+1):

q = -float('inf')

for i in range(1, j+1):

if q < p[i] + r[j-i]:

q = p[i] + r[j-i]

s[j] = i

r[j] = q

return r, s

32



Reconstructing a Solution

def print_cut_rod_solution(p, n):

r, s = extended_bottom_up_cut_rod(p, n)

while n > 0:

print(s[n])

n -= s[n]

33



Reconstructiong a Solution

In the bottom-up approach, the table s is used to store the size of

the first piece to cut off.

The function print_cut_rod_solution uses this table to print

the cuts that should be made.

34



Matrix-chain Multiplication



Matrix-chain Multiplication

Given a sequence of matrices A1,A2, . . . ,An, where the dimensions

of matrix Ai are pi−1 × pi , determine the most efficient way to

multiply the matrices.

The problem is to determine the order in which the matrices should

be multiplied so that the number of scalar multiplications is

minimized.

35



Matrix-chain Multiplication

Consider three matrices A ∈ R10×100, B ∈ R100×5, and C ∈ R5×50.

Scalar multiplications required for

� (AB)C is 10× 100× 5 + 10× 5× 50 = 7500 and

� A(BC ) is 10× 100× 50 + 100× 5× 50 = 75000.

36



Matrix-chain Multiplication

� Matrix multiplication is associative, so the order in which the

matrices are grouped does not matter.

� The key to solving this problem is to find the most efficient

way to group the matrices.

� The first part of the solution is to determine the number of

possible groupings, or parenthesizations.

37



Determining Parenthesizations

The number of possible parenthesizations of a chain of n matrices

is given by P(n). When n ≥ 2, the number of possible

parenthesizations is given by

P(n) =
n−1∑
k=1

P(k)P(n − k).

38



Dynamic Programming Solution

Cormen et al. suggest a 4 step process to construct a dynamic

programming solution to the matrix-chain multiplication problem:

1. Structure of an optimal solution

2. Recursive solution

3. Compute the optimal costs

4. Computing the optimal solution

39



Optimal Substructure

What is the optimal substructure of this problem?

Consider matrix-chain sequence Ai :j = AiAi+1 · · ·Aj .

If we split the sequence at k , then the optimal solution to the

problem is the optimal solution to the subproblems Ai :k and Ak+1:j .

40



Optimal Substructure

The number of scalar multiplications required to compute Ai :j is the

sum of the number of scalar multiplications required to compute

Ai :k and Ak+1:j

combined with

the number of scalar multiplications required to compute the

product of the two subproblems.

41



Optimal Substructure

The number of scalar multiplications required to compute Ai :j is the

sum of the number of scalar multiplications required to compute

Ai :k and Ak+1:j

combined with

the number of scalar multiplications required to compute the

product of the two subproblems.

41



Optimal Substructure

How can we ensure that there is not a more optimal

grouping of Ah:l , where i ≤ h < k and k < l ≤ j?

The answer lies in evaluating all possible splits.

42



Optimal Substructure

How can we ensure that there is not a more optimal

grouping of Ah:l , where i ≤ h < k and k < l ≤ j?

The answer lies in evaluating all possible splits.

42



Recursive Solution

What is the cost of an optimal solution to the problem?

We must first compute the minimum cost of parenthesizing Ai :j for

1 ≤ i ≤ j ≤ n.

43



Recursive Solution

Let m[i , j ] be the minimum number of scalar multiplications needed

to compute Ai :j .

Starting with the base case, m[i , i ] is the cost to compute the

multiplication of a single matrix, which is 0.

Assuming optimal subproblems are chosen,

m[i , j ] = m[i , k] +m[k + 1, j ] + pi−1pkpj , where the last term is the

cost of multiplying Ai :kAk+1:j .

44



Recursive Solution

All possible splits must be evaluated: how many are there?

Omitting the first and last matrices, there are j − i possible splits.

45



Recursive Solution

We can now define the optimal solution in terms of the following

recursion:

m[i , j ] = min{m[i , k] +m[k + 1, j ] + pi−1pkpj : i ≤ k < j}.

46



Storing the Solutions

This is no better than the brute-force method until we figure out

how to select the optimal subproblems and store their solutions.

How can we optimally select k?

47



Storing the Solutions

How can we optimally select k?

A bottom-up approach involves computing the cost of all possible

combinations of the n matrices and building up from there.

This requires O(n2) memory to store both the costs m[i , j ] as well

as the value of k that splits them s[i , j ].

48



Storing the Solutions

def matrix_chain_order(p):

n = len(p) - 1

m = [[0 for _ in range(n)] for _ in range(n)]

s = [[0 for _ in range(n)] for _ in range(n)]

for l in range(2, n+1): # chain length

for i in range(1, n-l+2): # start index

j = i + l - 1 # end index

m[i][j] = float('inf')

for k in range(i, j):

q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j]

if q < m[i][j]:

m[i][j] = q # save the cost

s[i][j] = k # save the index

return m, s
49



Storing the Solutions

� This computes the cost of all possible combinations of the n

matrices and stores the value of k that splits them.

� The outer-most for loop controls the length of the chain

being evaluated.

� It starts at 2 since the cost of a length 1 chain is 0.

� Intuition tells us that the triply-nested for loop has a time

complexity of O(n3).

50



Storing the Solutions

This algorithm computes the cost in ascending order of chain

length.

� When l = 2, the cost of all chains of length 2 is computed.

� When l = 3, the cost of all chains of length 3 is computed,

and so on.

� The recursion in the inner-most nested loop will only ever

access the entries in m which have been previously computed.

51



Reconstructing a Solution

We now have a solution which generates the optimal number of

scalar multiplications needed for all possible combinations of the n

matrices.

We do not yet have a solution which tells us the order in which the

matrices should be multiplied: this information is held in s,

which records the value of k that splits the chain.

52



Reconstructing a Solution

We now have a solution which generates the optimal number of

scalar multiplications needed for all possible combinations of the n

matrices.

We do not yet have a solution which tells us the order in which the

matrices should be multiplied: this information is held in s,

which records the value of k that splits the chain.

52



Reconstructing a Solution

def print_optimal_parens(s, i, j):

if i == j:

print(f"A_{i}", end="")

else:

print("(", end="")

print_optimal_parens(s, i, s[i][j])

print_optimal_parens(s, s[i][j]+1, j)

print(")", end="")

53



Reconstructing a Solution

Stored tables from calling Matrix-Chain-Order (Cormen et al.). 54



Reconstructing a Solution

First call is to print_optimal_parens(s, 1, 6).

This recursively calls print_optimal_parens(s, 1, 3) and

print_optimal_parens(s, 4, 6).

55



Reconstructing a Solution

Second call: print_optimal_parens(s, 1, 3)

� This recursively calls print_optimal_parens(s, 1, 1) and

print_optimal_parens(s, 2, 3).

� This first call has i == j , so it prints A1.

� The second call prints (A2A3).

� The initial call already set up the first set of parenthesis, so

the intermediate result is ((A1(A2A3)) · · · ).

56



Reconstructing a Solution

Third call: print_optimal_parens(s, 4, 6)

� This recursively calls print_optimal_parens(s, 4, 5) and

print_optimal_parens(s, 6, 6).

� This will recursively call print_optimal_parens(s, 4, 4)

and print_optimal_parens(s, 5, 5).

� This produces (A4A5) from the first subcall and A6 from the

second subcall.

� The intermediate result is now (· · · ((A4A5)A6)).
57



Reconstructing a Solution

Putting it all together

Combining these results yields

((A1(A2A3))((A4A5)A6)).

This is the optimal parenthesization of the matrix chain

A1A2A3A4A5A6.

58



Applying Dynamic Programming



Applying Dynamic Programming

As shown in previous examples, determining the optimal

substructure is the first step in formulating a dynamic

programming solution.

In most cases, this comes from understanding the problem itself

well: it is the result of a natural way of analysis and decomposition

of the problem.

59



Determining Optimal Substructure

Determining the optimal substructure of a problem can be

accomplished by following the steps below.

1. Show that a solution to a problem requires making a choice,

like where to cut in the rod cutting problem.

2. Assume that you are given an optimal choice.

3. Identify the subproblems that result from this choice.

4. Show that solutions to these subproblems are optimal.

60



Determining Optimal Substructure

Determining the optimal substructure of a problem can be

accomplished by following the steps below.

1. Show that a solution to a problem requires making a choice,

like where to cut in the rod cutting problem.

2. Assume that you are given an optimal choice.

3. Identify the subproblems that result from this choice.

4. Show that solutions to these subproblems are optimal.

60



Determining Optimal Substructure

Determining the optimal substructure of a problem can be

accomplished by following the steps below.

1. Show that a solution to a problem requires making a choice,

like where to cut in the rod cutting problem.

2. Assume that you are given an optimal choice.

3. Identify the subproblems that result from this choice.

4. Show that solutions to these subproblems are optimal.

60



Determining Optimal Substructure

Determining the optimal substructure of a problem can be

accomplished by following the steps below.

1. Show that a solution to a problem requires making a choice,

like where to cut in the rod cutting problem.

2. Assume that you are given an optimal choice.

3. Identify the subproblems that result from this choice.

4. Show that solutions to these subproblems are optimal.

60



Determining Optimal Substructure

In the last step, we are typically looking for a contradiction.

The assumption of step 2 means that if we end up finding a more

optimal solution to a subproblem, then the original choice was not

optimal.

The result is that we have a better overall solution.

61



Determining Optimal Substructure

� The efficiency of a solution depends on the number of

subproblems times the number of choices we have for each

subproblem.

� It is better to start with a simple case and expand outward as

necessary.

� Using a subproblem graph is a great way to visualize the

subproblems and their dependencies.

62



Counter-Example: The Longest Simple Path

Consider the following problems which first appear to have optimal

substructure.

1. Shortest path: find a path u ⇝ v with the fewest edges

without cycles.

2. Longest simple path: find a path u ⇝ v with the most

edges without cycles.

63



Counter-Example: The Longest Simple Path

The first problem has optimal substructure.

� Suppose that the shortest path u ⇝ v is given by p.

� Given some intermediate vertex w , the optimal path from

u ⇝ w is given by p1 and the optimal path from w ⇝ v is

given by p2.

� If there were a shorter path p′1 from u ⇝ w then we could

replace p1 with it and get a total path with fewer edges.

64



Counter-Example: The Longest Simple Path

The first problem has optimal substructure.

� Suppose that the shortest path u ⇝ v is given by p.

� Given some intermediate vertex w , the optimal path from

u ⇝ w is given by p1 and the optimal path from w ⇝ v is

given by p2.

� If there were a shorter path p′1 from u ⇝ w then we could

replace p1 with it and get a total path with fewer edges.

64



Counter-Example: The Longest Simple Path

The first problem has optimal substructure.

� Suppose that the shortest path u ⇝ v is given by p.

� Given some intermediate vertex w , the optimal path from

u ⇝ w is given by p1 and the optimal path from w ⇝ v is

given by p2.

� If there were a shorter path p′1 from u ⇝ w then we could

replace p1 with it and get a total path with fewer edges.

64



Counter-Example: The Longest Simple Path

Why does that argument reinforce the idea of optimal

substructure?

By showing that the optimal solution to a subproblem is the

optimal solution to the original problem.

This argument becomes clearer as we consider the longest simple

path problem.

65



Counter-Example: The Longest Simple Path

Why does that argument reinforce the idea of optimal

substructure?

By showing that the optimal solution to a subproblem is the

optimal solution to the original problem.

This argument becomes clearer as we consider the longest simple

path problem.

65



Counter-Example: The Longest Simple Path

Longest simple path problem (Cormen et al.).

66



Counter-Example: The Longest Simple Path

The path q → r → t is the longest simple path from q to t.

Keep in mind that the problem is to find a simple path with

the most edges. If the substructure is optimal, then the

subpaths must also exhibit maximal edges.

67



Counter-Example: The Longest Simple Path

The subpath q ⇝ r in this case is simply q → r , but the longest

simple path from q to r is q → s → t → r .

Therefore, the subpath q ⇝ r is not optimal.

This is a counter-example to the idea that the longest simple path

problem has optimal substructure.

68



Counter-Example: The Longest Simple Path

The longest simple path problem does not have independent

subproblems.

Consider a path from q to t.

This could be broken down into subproblem q ⇝ r and r ⇝ t.

69



Counter-Example: The Longest Simple Path

For q ⇝ r , we have q → s → t → r .

� This subproblem is dependent on s and t, so we cannot use

them in the second subproblem r ⇝ t without forming a path

that is not simple.

� Specifically, the first subproblem includes t, so the second

subproblem cannot include t.

� However, the second subproblem MUST include t.

70



Counter-Example: The Longest Simple Path

For q ⇝ r , we have q → s → t → r .

� This subproblem is dependent on s and t, so we cannot use

them in the second subproblem r ⇝ t without forming a path

that is not simple.

� Specifically, the first subproblem includes t, so the second

subproblem cannot include t.

� However, the second subproblem MUST include t.

70



Counter-Example: The Longest Simple Path

For q ⇝ r , we have q → s → t → r .

� This subproblem is dependent on s and t, so we cannot use

them in the second subproblem r ⇝ t without forming a path

that is not simple.

� Specifically, the first subproblem includes t, so the second

subproblem cannot include t.

� However, the second subproblem MUST include t.

70



Using Overlapping Subproblems

Do not confuse the idea of overlapping subproblems with the

need for the subproblems to be independent.

� Subproblems are independent if they do not share resources.

� Overlapping subproblems means that a subproblem may

require the result of another independent subproblem.

� This is the case in the rod cutting problem, for example.

71



Using Overlapping Subproblems

A desirable trait of any recursive problem is that it have a small

number of unique subproblems.

The running time of such a solution is dependent on the number of

subproblems, so having more of them will naturally lead to a less

efficient solution.

72



Longest Common Subsequence



Longest Common Subsequence

A longest common subsequence (LCS) of two input sequences

X = ⟨x1, x2, . . . , xm⟩ and Y = ⟨y1, y2, . . . , yn⟩ is a sequence

Z = ⟨z1, z2, . . . , zk⟩ such that Z is a subsequence of both X and Y

and k is as large as possible.

73



Longest Common Subsequence

For example, given X = ⟨A,B ,C ,B ,D,A,B⟩ and
Y = ⟨B ,D,C ,A,B ,A⟩, the LCS is ⟨B ,C ,A,B⟩.

74



Longest Common Subsequence

The subsequence is not necessarily consecutive!

A subsequence Z is common to a sequence X if it corresponds to a

strictly increasing sequence of indices such that xij = zj .

75



Naive Solution

How would we solve this problem using a brute-force

method?

We could generate all possible subsequences of X and Y and then

compare them.

This would require O(n2m) time.

76



Dynamic Programming Solution

Following the four step process, we can formulate a dynamic

programming solution to the LCS problem.

Step 1 is to determine the optimal substructure of the problem.

77



Optimal Substructure

Let X = ⟨x1, x2, . . . , xm⟩ and Y = ⟨y1, y2, . . . , yn⟩. Let
Z = ⟨z1, z2, . . . , zk⟩ be an LCS of X and Y .

� If xm = yn, then zk = xm = yn and Zk−1 is an LCS of Xm−1 and

Yn−1.

� If xm ̸= yn and zk ̸= xm, then Z is an LCS of Xm−1 and Y .

� If xm ̸= yn and zk ̸= yn, then Z is an LCS of X and Yn−1.

78



Optimal Substructure

Consider two sequences (words): rocinante and canterbury.

� The longest common subsequence is ”cante”.

� Since the last characters of the two original words do not

match, we can remove the last character from either word and

find the LCS of the two remaining words.

� This implies that we could have found the LCS of the two

original words by finding the LCS of a smaller subproblem.

79



Optimal Substructure

What if the two words had the same last character?

The LCS of the shorter strings is the same as the LCS of the

original strings with the last character removed.

80



Optimal Substructure

What if the two words had the same last character?

The LCS of the shorter strings is the same as the LCS of the

original strings with the last character removed.

80



Recursive Solution

The next step is to write a recursive solution to the problem.

Given the substrucure just presented, a bottom-up approach seems

intuitive.

Starting with indices i = 0 and j = 0 which indicate the length of

the current strings Xi and Yj , increase the length and compute the

LCS as we go.

81



Recursive Solution

Define c[i , j ] as the LCS length of Xi and Yj .

The goal is to compute c[m, n], where m and n are the lengths of

X and Y , respectively.

c[i , j ] =


0 if i = 0 or j = 0,

c[i − 1, j − 1] + 1 if i , j > 0 and xi = yj ,

max(c[i − 1, j ], c[i , j − 1]) if i , j > 0 and xi ̸= yj .

82



Recursive Solution

The LCS of ”atom” and ”ant” is ”at”.

The following tree shows the recursive calls to each subproblem.

A dashed line indicates that the subproblem has already been

solved.

83



Recursive Solution

Recursive calls to the LCS problem (Cormen et al.). 84



Storing the Solutions

The LCS problem has Θ(mn) distinct subproblems, so storing the

solutions to these subproblems will allow us to avoid redundant

computation.

A dynamic programming solution goes as follows:

1. Store the lengths of the LCS of the prefixes of X and Y in a

table c .

2. Additionally store the solution to the subproblems in a table b

so that we can reconstruct the LCS.

3. The entries are filled in a row-major order.
85



Storing the Solutions

Example: lcs.py

86


	Rod Cutting
	Matrix-chain Multiplication
	Applying Dynamic Programming
	Longest Common Subsequence

