CSE 5311: Design and Analysis of
Algorithms

Greedy Algorithms

Alex Dillhoff

University of Texas at Arlington

Greedy Algorithms

Greedy algorithms are a class of algorithms that yield locally
optimal solutions.

In cases where the local optimum is also the global optimum,
greedy algorithms are ideal.

Even in cases where the global solution is more elusive, a
local solution may be sufficient.

Activity Selection

Activity Selection

Given a set of activities that need to be scheduled using a
common resource, the activity selection problem is to find
the maximum number of activities that can be scheduled

without overlapping.

Activity Selection

Definition

- Each activity has a start time s; and finish time f;, where
0<s;<fi<o0.

- An activity a; takes place over the interval [s;, f;).

- Two activities a; and a; are mutually compatible if s; > f;
ors; > fi.

Activity Selection

Objective: Sort the activities by finish time and find the
largest subset of mutually compatible activities.

111213456789
Si|11214(1(5| 8|9 |11]|13
fil3/5/718]9(10|11| 14|16

Activity Selection

How many mutually compatible sets are there?

Activity Selection

5 I | |
. =
' ‘ el : |
! a, .
| n L | |
I a I o : I a I
| L ‘ |y | ‘ |
! aﬂ ! ! 3 033 ! ! ad ! ! 3“8 3 !

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Activities over time (Cormen et al.).

Activity Selection

How many mutually compatible sets are there?

. {a4, 03, 04,08}
. {a4, 03, 04,09}
. {ay,0a3,07,0a9}
. {ay,as, 07,03}
. {ay,as,0a7,a9}
. {ay,as, 07,08}
. {ay,as, 07,08}

~N O U1 W N

Optimal Substructure

How do we verify that this problem has optimal
substructure?

Optimal Substructure

How do we verify that this problem has optimal
substructure?

Step 1: Define the problem formally...

Optimal Substructure

Define Sj; as the set of all activities that start after a; finishes
and finish before a; starts.

Sj={ar€S:fi <sp<fr <55}

This defines a clear subset of the original set of data.

10

Optimal Substructure

Which activities are those in S;; compatible with?

1

Optimal Substructure

Which activities are those in S;; compatible with?

1. any a; that finish by f;
2. any a; that start no earlier than s;.

1

Optimal Substructure

Given this subset, our subproblem is that of finding a
maximum set of mutually compatible activities in S;, denoted
A,‘j.

12

Optimal Substructure

If ar € Aj;, we are left with two subproblems:

- Find mutually compatible activities in S, — starts after q;
finishes and finish before ay, starts.

- Find mutually compatible activities in Sy; — starts after a,
finishes and finish before g; start.

13

Optimal Substructure

- The two subsets are defined as Ay, = A; N S, and
A = Ajj N Spj, respectively.

- Then A,‘j =Ajp U {Gk} U Akj.

+ The size of the set is given by |Aj| = |Ai| + 1+ |Agj].

Optimal Substructure

Claim: If our problem has optimal substructure, then the
optimal solution A; must include optimal solutions for Sj, and
Skj.

This claim can be proven using the cut-and-paste method
used in Dynamic Programming.

15

Optimal Substructure

This technique works by showing that if a solution to a
problem is not optimal, then there exists a way to cut the
suboptimal portion and paste an optimal one.

This will lead to a contradiction because the original was
assumed to be optimal.

Optimal Substructure

Proof

+ Suppose that A is not optimal, and we could find a set
Ay that is larger.

* Then we could replace A with Aj; in Aj to obtain a larger
set.

+ This contradicts the assumption that A; is optimal.

Optimal Substructure

Simplified

- If the claim is that the given solution is optimal, and the
solution is constructed from optimal solutions to
subproblems, then there cannot exist any other solution

that is better.

- Another way to look at this: if we construct optimal
solutions to subproblems, then the solution to the
original problem must be optimal.

Recursive Solution

Let c[i,j] be the size of the optimal solution for S;;.

The size is computed as

cli,j] = c[i, R] + c[R,J] + 1.

Recursive Solution

This dynamic programming solution assumes we know the
optimal solution for all subproblems.

To know this, we need to examine all possibilities which
include ap In the solution.

20

Recursive Solution

To know this, we need to examine all possibilities which
include ay, in the solution.

. if S = 0,
A7\ max{cli, b + ko] +1: aw € Sy} iF S #0.

21

Greedy Solution

The greedy solution is the naive one: select an activity that
leaves the resource available for as many other activities as
possible, which is the activity that finishes first.

If multiple activities finish at the same time, select one
arbitrarily.

22

Greedy Solution

The optimal solution consists of all a; that start after ay
finishes, where ay, is the last activity to finish:

Sk=1a;€S:5; > fir}.

23

Greedy Solution

Is the greedy solution optimal?

- Suppose that a, € S Is the activity that finishes first.

24

Greedy Solution

Is the greedy solution optimal?

- Suppose that a, € S Is the activity that finishes first.

- Then it must be included in the maximum size subset of
mutually compatible activities A.

24

Greedy Solution

Is the greedy solution optimal?

- Suppose that a, € S Is the activity that finishes first.

- Then it must be included in the maximum size subset of
mutually compatible activities A.

+ Suppose we are given A, and we look at a; € Ay, the
activity that finishes first.

24

Greedy Solution

Is the greedy solution optimal?

- If a; = ap, then the greedy solution is optimal.

25

Greedy Solution

Is the greedy solution optimal?

- If a; = ap, then the greedy solution is optimal.

- If a; # ap, then we can replace a; with a,, since they are
both compatible with all other activities in Ap.

25

Greedy Solution

Is the greedy solution optimal?

- If a; = ap, then the greedy solution is optimal.

- If a; # ap, then we can replace a; with a,, since they are
both compatible with all other activities in Ap.

- Picking the activity that finishes first does not change the
size of the optimal solution.

25

Greedy Solution

The solution is top-down:

1. pick the solution that finishes first,

2. remove all activities that are incompatible with the
chosen activity,

3. repeat until no activities remain.

26

Recursive Greedy Algorithm

def recursive_activity_selector(s, f, k, n):
m=%k+ 1
while m <= n and s[m] < f[k]:
m+= 1
if m <= n:
return [m] + recursive_activity_selector(s, f, m, n)
else:
return []

27

Recursive Greedy Algorithm

- Assumes that f is sorted in increasing order.
- k represents the index of the current subproblem.
- The number of activities is given by n.

- The while loop increments m until it finds an activity that
starts after activity k finishes.

- If such an activity exists, it is added to the solution set
and the algorithm is called recursively with the new
subproblem.

28

Recursive Greedy Algorithm

ios
0 - 0
a;
1 1 4 RECURSIVE-ACTIVITY-SELECTOR(s, f, 0, 11
m=1 (s.f)

Initial call to recursive_activity_selector.

29

Recursive Greedy Algorithm

- ay
2 3 3 RECURSIVE-ACTIVITY-SELECTOR(s, f, 1, 11)

s

I —

1]
s | .-
@ m=4

Call to recursive_activity_selector from a;.

30

Recursive Greedy Algorithm

5 3 9
6 5 9
7 6 10
8 711

RECURSIVE-ACTIVITY-SELECTOR(s, f, 4. 1 1)

=~ %

| a | [

g
| a | [4

a4

|] |4

4 e
| a1 | [] m=8

Call to recursive_activity_selector from a,.

31

Recursive Greedy Algorithm

RECURSIVE-ACTIVITY-SELECTOR(s, f, 8, 11) *\K”U

9 8 12

| 4 I g
0 2 14 e L]

| a I TR L —

112 16 /
| a | | ay | ag m=11

Call to recursive_activity_selector from as.

32

Recursive Greedy Algorithm

RECURSIVE-ACTIVITY -SELECTOR (s, f, 11, 11)

| [4 | ag |

ap

> time

4 5 6 7 8 9 10 11 12 13

Result of recursive_activity_selector.

14

15 16

33

At first glance, the algorithm appears to be O(n?) because of
the while loop coupled with the recursive call.

Once an activity has been selected, the recursive call only
considers the activities next n — R activities.

The while loop picks up where the previous call left off, so
the total number of iterations is n.

The algorithm is O(n).

34

lterative Algorithm

The previous solution can be adapted to an iterative one.

def greedy_activity_selector(s, f):
n = len(s) - 1
A = [1]
k=1
for m in range(2, n + 1):
if s[m] >= f[k]:
A append (m)
k =m
return A 3

lterative Algorithm

In the for loop, the first line essentially asks if an, € Sk.

If so, then add it to the solution set and update k to m.

36

The analysis of the iterative approach is much clearer.

The loop goes over all activities once, so the algorithm is O(n).

37

Properties of Greedy Algorithms

Properties of Greedy Algorithms

You can probably imagine a problem for which a greedy
solution would not provide the optimal solution.

38

Properties of Greedy Algorithms

You can probably imagine a problem for which a greedy
solution would not provide the optimal solution.

Path planning is one such problem.

38

Properties of Greedy Algorithms

Path planning is one such problem.

If we greedily chose the shortest path at each step, we may
have missed a shorter path that is not the shortest at each

step.

The activity selection problem just so happens to be a perfect
candidate for a greedy solution, but what makes it so?

39

Properties of Greedy Algorithms

Review of activity selection.

1. Determine the optimal substructure.

40

Properties of Greedy Algorithms

Review of activity selection.

1. Determine the optimal substructure.
2. Develop a recursive solution.

40

Properties of Greedy Algorithms

Review of activity selection.

1. Determine the optimal substructure.

2. Develop a recursive solution.

3. Show that making the greedy choice leaves only a single
subproblem.

40

Properties of Greedy Algorithms

Review of activity selection.

1. Determine the optimal substructure.
2. Develop a recursive solution.
3. Show that making the greedy choice leaves only a single

subproblem.
4. Prove that making the greedy choice leads to an optimal

solution.

40

Properties of Greedy Algorithms

Review of activity selection.

1. Determine the optimal substructure.

2. Develop a recursive solution.

3. Show that making the greedy choice leaves only a single
subproblem.

4. Prove that making the greedy choice leads to an optimal
solution.

5. Develop a recursive algorithm.

40

Properties of Greedy Algorithms

Review of activity selection.

1. Determine the optimal substructure.

2. Develop a recursive solution.

3. Show that making the greedy choice leaves only a single
subproblem.

4. Prove that making the greedy choice leads to an optimal
solution.

5. Develop a recursive algorithm.

6. Convert it to an iterative algorithm.
40

Properties of Greedy Algorithms

The first couple of steps are common to dynamic
programming problems.

In this case, we could have jumped straight to the greedy
approach.

41

Properties of Greedy Algorithms

Filtering out these extra steps leaves us with:

1. Cast the optimization problem as one in which we make a
choice and are left with a single subproblem.

42

Properties of Greedy Algorithms

Filtering out these extra steps leaves us with:

1. Cast the optimization problem as one in which we make a
choice and are left with a single subproblem.
2. Prove that the greedy choice is optimal.

42

Properties of Greedy Algorithms

Filtering out these extra steps leaves us with:

1. Cast the optimization problem as one in which we make a
choice and are left with a single subproblem.

2. Prove that the greedy choice is optimal.

3. Demonstrate optimal substructure: if you make a greedy
choice, then you are left with a subproblem such that
combining an optimal solution with the greedy choice
made previously, you end up with an optimal solution to
the original problem.

42

Properties of Greedy Algorithms

We need two properties to prove that a greedy solution is
optimal:

1. the greedy choice property and the

2. optimal substructure property.

43

Greedy Choice Property

The greedy choice property states that the optimal solution
can be found by making locally greedy choices.

In Dynamic programming the choices at each step are made
from the knowledge of optimal solutions to subproblems.

44

Greedy Choice Property

A greedy solution also makes a choice at each step, but it is
only based on local information.

They key of this property is to show that the greedy choice is
optimal at each step.

45

Greedy Choice Property

For the activity selection problem, the steps were

1. Examine the optimal solution.

46

Greedy Choice Property

For the activity selection problem, the steps were

1. Examine the optimal solution.

2. If it has the greedy choice, then the greedy choice is
optimal.

46

Greedy Choice Property

For the activity selection problem, the steps were

1.
2.

Examine the optimal solution.

If it has the greedy choice, then the greedy choice is
optimal.

If it does not have the greedy choice, then replace the
suboptimal choice with the greedy choice.

46

Optimal Substructure Property

A problem has optimal substructure if the optimal solution
contains optimal solutions to subproblems.

We demonstrated this earlier for activity selection.

47

Optimal Substructure Property

Start with the assumption that we arrived to a subproblem by
making greedy choices.

Next step: show that the optimal solution to the subproblem
combined with the greedy choice leads to an optimal solution
to the original problem.

48

Greedy vs. Dynamic Programming

Since there Is such overlap between greedy algorithms and
dynamic programming in terms of their properties, it is
Important to understand the differences between the two.

To illustrate these difference, we will look at two variations of
the same problem.

49

0 — 1 Knapsack Problem

0 — 1 Knapsack Problem

Consider the 0 — 1 knapsack problem.

- You have n items.
- Item 1 Is worth v; and weighs w;.

- Find the most valuable subset of items with total weight
less than or equal to W.

- |ltems cannot be divided.

50

0 — 1 Knapsack Problem

If the most valuable subset of items weighing at most W
includes item J...

then the remaining weight must be the most valuable subset
of items weighing at most W — w; taken from n — 1 original
items excluding item J.

51

Fractional Knapsack Problem

This Is similar to the 0 — 1 knapsack problem, but items can
be divided.

The objective is to maximize the value of the items in the
knapsack.

52

Fractional Knapsack Problem

Optimal substructure: if the most valuable subset weighing at
most W includes the weight w of item J, then the remaining
weight must be the most valuable subset weighing at most

W — w that can be taken from the n — 1 original items plus

w; — w of item J.

There is some fraction of item j left after taking w of it.

53

Showing the Greedy Property

It is established that both problems have optimal
substructure.

Only the fractional knapsack problem has the greedy
property.

54

Showing the Greedy Property

def fractional knapsack(v, w, W):
n = len(v)
load = O
i=0
while load < W and i <= n:
if wli] <= W - load:
load += wl[il
i+=1
else:
load += (W - load) * v[i] / wl[il o

Showing the Greedy Property

If we are able to sort each item by its value-to-weight ratio,
then the greedy choice is to take as much as possible from
the most valuable item first, the second most valuable item

next, and so on.
This considers n items in the worst case, and the items need

to be sorted by value-to-weight ratio.

The algorithm is O(nlog n).

56

Showing the Greedy Property

The 0 — 1 knapsack problem does not have the greedy
property.

The greedy choice is to take the item with the highest
value-to-weight ratio.

57

Showing the Greedy Property

— ?_‘
] % $80
iem 3 30| $120
- — — +
: 50 30| $120
tem 2
e < * 20| $100 20($100
item | 30) + + +
20 20/s100 b - -
10| $60 [10] $60 10| $60
— N N | — N
$60 $100 $120 knapsack = $220 — $160 = $180 = $240

(a) (b) (c)

The 0 — 1 knapsack problem (Cormen et al.).

58

Showing the Greedy Property

In this problem, we have a knapsack whose total capacity is
W = 50.

v; | 60]100|120
w; | 10| 20 | 30

59

Showing the Greedy Property

The fractional algorithm would selection the first item since it
has the greatest value-to-weight ratio.

The 0 — 1 knapsack problem, however, would select the
second and third items to maximize the value of the items in
the knapsack.

60

Huffman Codes

Huffman Codes

Huffman coding is a lossless data compression algorithm that
assigns variable-length codes to input characters, with lengths
based on the frequencies of occurrence for those characters.

Originally developed by David A. Huffman in 1952 during his
Ph.D. at MIT, he published the algorithm under the title "A

Method for the Construction of Minimum-Redundancy Codes”.

61

Huffman Codes

Huffman coding involves:

- Building a Huffman tree from the input characters and
their frequencies.

- Traversing the tree to assign codes to each character.

62

Huffman Codes

Suppose we have a document consisting of 6 unique
characters, each represented by a byte (8 bits).

- We could represent these 6 characters using 3 bits, since
that is the minimum number of bits needed to represent
6 unique values.

- This is known as a fixed-length code.

63

Huffman Codes

Suppose we have a document consisting of 6 unique
characters, each represented by a byte (8 bits).

- We could represent these 6 characters using 3 bits, since
that is the minimum number of bits needed to represent
6 unique values.

- This is known as a fixed-length code.

- If we instead assigned a variable-length code to each
character based on its frequency of occurrence, we would

further reduce the footprint of the file size.
63

Huffman Codes

Character | Frequency (in thousands) | Variable-length code
A 45 0
B 13 101
C 12 100
D 16 111
E 9 1101
F 5 1100

64

Huffman Codes

- The encoding is optimal considering the overall but
length of the encoded file.

- Based on the above fixed-length code, the file size is
300,000 bits.

- The variable-length code reduces the file size to 224,000
bits.

65

Huffman Codes

How many bits are needed to encode n > 2 characters?

66

Huffman Codes

How many bits are needed to encode n > 2 characters?

[lgn

66

Prefix-Free Codes

A prefix-free code is a code in which no codeword is also a
prefix of another codeword.

This property simplifies decoding since the code can be read
from left to right without ambiguity.

The codeword "beef” has the encoding
101110111011100 = 101 - 1101 - 1101 - 1100, where - denotes
concatenation.

67

Prefix-Free Codes

If a code of 1 were used, then the code would be a prefix of all
other codes.

This would make decoding ambiguous.

68

Prefix-Free Codes

How are the codes decoded?

Huffman Coding uses a binary tree.

- Starting with the first bit in the encoded message,
traverse the tree until a leaf node is reached.

- The character at the leaf node is the decoded character.
- The tree is known as a Huffman tree.

69

Prefix-Free Codes

A full binary tree, where each nonleaf node has two
subnodes, is optimal for decoding.

If the tree has this property then an optimal prefix-free code
has |C| leaves and exactly |C| — 1 internal nodes.

70

Huffman Tree

A Huffman tree (Cormen et al.). 71

Huffman Tree

Given a character ¢ with frequency c.freq, let dr(c) denote the
depth of character c in tree T. The cost of the code in bits is
given by

B(T) =) cfreq - di(c).

ceC

The depth of the character dr(c) is used since it also denotes
the length of the codeword.

72

Huffman Codes

def huffman(C):

n = len(C)

Q = build min_ heap(C)

for _ in range(n - 1):
z = Node(0)
z.left = x = extract min(Q)
z.right = y = extract_min(Q)
z.freq = x.freq + y.freq
insert(Q, z)

return extract min(Q) 7

Huffman Codes

- The function above builds a Huffman tree from a set of
characters C.

- At each iteration, the two nodes with the smallest
frequencies are extracted from the queue Q and are used
to create a new node z.

- This node represents the sum of the frequencies of the
two nodes.

- The node Is then inserted back into the queue so that it
can be used in future iterations. 7

Huffman Codes

(a) £:5 e9 | [c:12| |b:13| |d:16] |a:45 (b) |c:12| |b:13 14 d:16| |a:45
o/ \
£5] [e9
(c) 14 da:16 25 a:45 (d) 25 30 a:i4s
o/ \u o/ \u 0/ | o/ \1
£5] [e9 c:2] b:13 c:12] [b:13 14) [d:16
o/ \
£:5 e:9
) |a45 S5 () 100
0 ! NS
25 30 ads 55
0 1 0/ 1 V 1
c:12] [b:13] (14) [a:16 25 30
/N ANAY
£5] [e9 c:12] [b:13] (14) [a:16
v\
£5] [e9

Building a Huffman tree (Cormen et al.). .

- If the priority queue is implemented as a binary
min-heap, the call to build min_heap Iinitializes the
priority queue in O(n) time.

- The for loop runs n — 1 times, calling extract_min twice
and insert once.

- Each call to extract_min takes O(lgn) time yielding a
total of O(nlgn) time.

76

	Activity Selection
	Properties of Greedy Algorithms
	0 - 1 Knapsack Problem
	Huffman Codes

