Heapsort
CSE 5311: Design and Analysis of Algorithms

Alex Dillhoff

The University of Texas at Arlington

Introduction

A binary heap can be represented as a binary tree, but is stored as an array.

- The root is the first element of the array.

- The left subnode for thi ilement at inde@is located atépand the right
|

subnode is located a @
- This assumes a 1-based indexing. fb

Alex

Alex

Alex

How would this change for 0-based indexing?

How would this change for 0-based indexing?

- 2i + 1 for the left.
- 2i + 2 for the right.

- The parent could be accessed via L’%J-

A binary tree as a heap with its array representation (Cormen et al.).

Alex

Alex

Alex

Heaps come in two flavors: max-heaps and min-heaps.

They can be identified by satisfying a heap property.

- max-heap property: A[parent(i)] > A[i
- min-heap property: A[parent(i)] < Ali]

Alex

For sorting, a max-heap is used.

We will later study priority queues, where a min-heap is used.

Maintaining the Heap Property

Heap Property

The heap should always satisfy the max-heap property.

- This relies on a procedure called max_heapify.

- This assumes that the root element may violate the max-heap property, but...

Heap Property

The heap should always satisfy the max-heap property.

- This relies on a procedure called max_heapify.
- This assumes that the root element may violate the max-heap property, but...
- Assumes subtrees rooted by its subnodes are valid max-heaps.

- Swap nodes down the tree until the misplaced element is in the correct
position.

Heapify

def max_heapify(A, i, heap_size): //‘ v ~—
1 = left(di) I\ 1o
r = right(i) CL/ \‘l g q/ \‘$
largest = i 7D /

if 1 < heap_size and A[1] > A[i]: (= q (

if r < heap_size and A[r] > A[largest]:
largest = r

if largest != 1i:
A[i], Allargest] = A[largest], A[il]
max_heapify(A, largest, heap_size)

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Given that max_heapify IS a recursive function, we can analyze it with a
recurrence.

two subnodes:

- Driving function: the fix up that happens between the current node and its
é(1>

- Recurrence: based on how many elements are in the subheap rooted at the
current node.

Alex

Recurrence

- In the worst case of a binary tree, the last level of the tree is half full.
- The left subtree has height h + 1 compared to the right subtree’s height of h.

- For a tree of size n, the left subtree has 2+2 — 1 nodes and the right subtree

has 21 — 1 nodes. f

Alex

The number of nodes in the tree is equal to 1+ (2"+2 — 1) + (2" —1).

n:1+2h+2_1+2h+1_1
n = 2h+2 4 oh+1 _ 4
n=2M"241) -1
n=3.20"_1

10

+ This implies that 2i+1 = 081,
- In the worst case, the left subtree would have 22 — 1 =
which is bounded by 4.

2(”3—“) — 1nodes

+ The recurrence for the worst case of max_heapify is T(n) = T(4) + O(1).

1

Building the Heap

Building the Heap

Given an array of elements, how do we build the heap in the first place?

12

Building the Heap

Given an array of elements, how do we build the heap in the first place?

Use a bottom-up approach from the leaves.

12

Building the Heap

u ©
- The elements from [5| + 1to n are all leaves.

- This means that they are all 1-element heaps.

- Run max_heapify on the remaining elements to build the heap.
—_—

13

Alex

Alex

Alex

Building the Heap

def build_max_heap(A):
heap_size = len(A)
for i in range(len(A) // 2, -1, -1):
max_heapify(A, i, heap_size)

Why does this work?

- Each node starting at | §] 4 11is the root of a 1-element heap.

15

Why does this work?

- Each node starting at | §] 4 11is the root of a 1-element heap.

- The subnodes, which are to the right of node | 5], are roots of their own
max-heaps.

15

Why does this work?

- Each node starting at | §] 4 11is the root of a 1-element heap.
- The subnodes, which are to the right of node | 5], are roots of their own

max-heaps.
- The procedure loops down to the first node until all sub-heaps have been

max-heapified.

15

Why does this work?

alal1]3]2]16]9]10[14]8]7]

NG N
TN OTE

f']6

3/ \ 9 m/ 3/ \f; m/

14 8 7 14 8 7
(a) (b)

Building a heap from an array (Cormen et al.).

Why does this work?

1 I

) i il 1) 10
4/ \s 6/ \? 4//\9 ()/ \?
9 10 14 16 9 3
3/ \9 m/ 8/ \9 10/
2 8 7 2 3 7
() (d)

Building a heap from an array (Cormen et al.).

Why does this work?

i :1“ llﬁ
N N
4 / \ 5 6 / \ 7 4 / \ 5 6 / \ 7
14 7 9 3 8 7 9 3
8/ \9 10/ 3/ \ 9 10/

2 8 1 2 4 1
(e) (f)

Building a heap from an array (Cormen et al.).

Analysis of Heapsort

The call to max_heapify is...

The call to max_heapify is... O(lgn).

The loop in build_max_heap runs...

The call to max_heapify is... O(Ign). @ (V\ \ g)

The loop in build_max_heap runs... O(n) times.

Alex

Heapsort

def heapsort(A):
build_max_heap(A)
heap_size = len(A)
[for i in range(len(A) - 1, 0, -1):

Afo], A[i] = A[i], A[O]
heap_size -= 1 | (4 S bl‘l'Ll

max_heapify (A, O, heap_size)

Olnlgnt algn) = 6luly)

20

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

- Start by building a max-heap on the input array - O(n).

21

- Start by building a max-heap on the input array - O(n).

- Take the root element out of the heap and run max_heapify to maintain the
max-heap property - O(nlgn).

21

16 14) 10,
”14/ \10 ”8‘/ 10 8/ \’9\\
\s/ \7; 9/ \3 :ﬁ4// \'7/ 19,,/ N 1'4?/ \7 1/ \<ﬁ3i
e S [0 o N '
@@ D O W ® 14 16
(@) (b) (©

Example of Heapsort (Cormen et al.).

22

// \J ;1;;/ \2 \xz 1// 1/ \i;2,;: 8i (9
i (10 (14) (16 100 (14) (16 10) (14) (16
(d) (e ®

Example of Heapsort (Cormen et al.).

23

(4) (3 2
(g/)/ \3/ /2/ \\1 1/ 3)i
1/ i(1) (8 9 i (4 7) (8 9 4 D @ 9
10 14 16 10 14 16 10 14 16
(€ (h) ®

Example of Heapsort (Cormen et al.).

24

R
(1)
i(2 3
A|1|2|3|4/7|8|9]|10/14|16
4 7) (8 9
10 (14) (16
) (k)

Example of Heapsort (Cormen et al.).

25

Priority Queues

Priority Queues

What is it?

26

Priority Queues

What is it?

- A key-value data structure where each key has a priority.
- The elements are processed as a queue.

- Implemented with either a min-heap or max-heap (depending on the use
case).

26

Priority Queues

Operations

- Insert: Add a new element to the queue.
- Extract: Remove and return the element with the highest/lowest priority.

- Max/Min: Return the element with the highest/lowest priority without
removing it.

- Increase/Decrease Key: Change the priority of an element.

27

Priority Queue: Insert

1. Add the new element to the end of the array.
2. Set the new element’s priority to —oo (for max-heap) or oo (for min-heap).

3. Use the Increase/Decrease Key operation to set the correct priority.

28

Priority Queue: Insert

def max_heap_insert(A, obj, n):
if len(A) == n:
raise ValueError("Heap overflow")
key = float("-inf")

obj.key = key
A.append (obip

map obj to the last index -- dependent on the implementation
max_heap_increase _key(A, obj, key)

29

Alex

Alex

Priority Queue: Extract

1. Grab the root element (max or min).
2. Replace the root with the last element in the array.
3. Remove the last element.

4. Call max_heapify or min_heapify on the root to maintain the heap property.

30

Priority Queue: Extract

def max_heap_maximum(A) : YV\OY-VO‘\ =\0
if len(A) < 1:
raise ValueError("Heap underflow")
return A[O] 0

def max_heap_extract_max(A):
max_val = max_heap_maximum(A) |
Af0] = A[-1]
A.pop(O)

max_heapify (A, 0) 10 \ l ra \ 0 v 1

return max_val A ‘ lm
l’f 31

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Priority Queue: Increase Key

1. Check if the new key is smaller than the current key.

2. Set the element’s key to the new key.
3. While the element is not the root and its parent’s key is less than the
element’s key:
31 Swap the element with its parent.
3.2 Move up to the parent’s index.

32

Priority Queue: Increase Key

def max_heag_increase_key(A, obj, key): "
if key # obj.key:
raise ValueError("New key is smaller than current key")
obj.key = key

i = A.index(obj) # gets the index of the object | 2
while i > O and A[parent(i)].key Z’A[i].key:
A[i], Al[parent(i)] = Alparent(i)], A[i] (0 7

i = parent(i) \

33

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Class Exercise

Implement a minimum priority queue using a min-heap.

34

	Introduction
	Maintaining the Heap Property
	Building the Heap
	Analysis of Heapsort
	Heapsort
	Priority Queues

