
Heapsort
CSE 5311: Design and Analysis of Algorithms

Alex Dillhoff

The University of Texas at Arlington

Introduction

Heaps

A binary heap can be represented as a binary tree, but is stored as an array.

• The root is the first element of the array.
• The left subnode for the element at index i is located at 2i and the right
subnode is located at 2i+ 1.

• This assumes a 1-based indexing.

1

Alex

Alex

Alex

Heaps

How would this change for 0-based indexing?

• 2i+ 1 for the left.
• 2i+ 2 for the right.
• The parent could be accessed via ⌊ i−1

2 ⌋.

2

Heaps

How would this change for 0-based indexing?

• 2i+ 1 for the left.
• 2i+ 2 for the right.
• The parent could be accessed via ⌊ i−1

2 ⌋.

2

Heaps

A binary tree as a heap with its array representation (Cormen et al.).

3

Alex

Alex

Alex

Heaps

Heaps come in two flavors: max-heaps and min-heaps.

They can be identified by satisfying a heap property.

• max-heap property: A[parent(i)] ≥ A[i]
• min-heap property: A[parent(i)] ≤ A[i]

4

Alex

Heaps

For sorting, a max-heap is used.

We will later study priority queues, where a min-heap is used.

5

Maintaining the Heap Property

Heap Property

The heap should always satisfy the max-heap property.

• This relies on a procedure called max_heapify.
• This assumes that the root element may violate the max-heap property, but…

• Assumes subtrees rooted by its subnodes are valid max-heaps.
• Swap nodes down the tree until the misplaced element is in the correct
position.

6

Heap Property

The heap should always satisfy the max-heap property.

• This relies on a procedure called max_heapify.
• This assumes that the root element may violate the max-heap property, but…
• Assumes subtrees rooted by its subnodes are valid max-heaps.
• Swap nodes down the tree until the misplaced element is in the correct
position.

6

Heapify

def max_heapify(A, i, heap_size):
l = left(i)
r = right(i)
largest = i
if l < heap_size and A[l] > A[i]:

largest = l
if r < heap_size and A[r] > A[largest]:

largest = r
if largest != i:

A[i], A[largest] = A[largest], A[i]
max_heapify(A, largest, heap_size)

7

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Analysis

Given that max_heapify is a recursive function, we can analyze it with a
recurrence.

• Driving function: the fix up that happens between the current node and its
two subnodes: Θ(1).

• Recurrence: based on how many elements are in the subheap rooted at the
current node.

8

Alex

Analysis

Recurrence

• In the worst case of a binary tree, the last level of the tree is half full.

• The left subtree has height h+ 1 compared to the right subtree’s height of h.

• For a tree of size n, the left subtree has 2h+2 − 1 nodes and the right subtree
has 2h+1 − 1 nodes.

9

Alex

Analysis

The number of nodes in the tree is equal to 1+ (2h+2 − 1) + (2h+1 − 1).

n = 1+ 2h+2 − 1+ 2h+1 − 1
n = 2h+2 + 2h+1 − 1
n = 2h+1(2+ 1)− 1
n = 3 · 2h+1 − 1

10

Analysis

• This implies that 2h+1 = n+1
3 .

• In the worst case, the left subtree would have 2h+2 − 1 = 2(n+1)
3 − 1 nodes

which is bounded by 2n
3 .

• The recurrence for the worst case of max_heapify is T(n) = T(2n3) + O(1).

11

Building the Heap

Building the Heap

Given an array of elements, how do we build the heap in the first place?

Use a bottom-up approach from the leaves.

12

Building the Heap

Given an array of elements, how do we build the heap in the first place?

Use a bottom-up approach from the leaves.

12

Building the Heap

• The elements from ⌊n2 ⌋+ 1 to n are all leaves.

• This means that they are all 1-element heaps.

• Run max_heapify on the remaining elements to build the heap.

13

Alex

Alex

Alex

Building the Heap

def build_max_heap(A):
heap_size = len(A)
for i in range(len(A) // 2, -1, -1):

max_heapify(A, i, heap_size)

14

Why does this work?

• Each node starting at ⌊n2 ⌋+ 1 is the root of a 1-element heap.

• The subnodes, which are to the right of node ⌊n2 ⌋, are roots of their own
max-heaps.

• The procedure loops down to the first node until all sub-heaps have been
max-heapified.

15

Why does this work?

• Each node starting at ⌊n2 ⌋+ 1 is the root of a 1-element heap.
• The subnodes, which are to the right of node ⌊n2 ⌋, are roots of their own
max-heaps.

• The procedure loops down to the first node until all sub-heaps have been
max-heapified.

15

Why does this work?

• Each node starting at ⌊n2 ⌋+ 1 is the root of a 1-element heap.
• The subnodes, which are to the right of node ⌊n2 ⌋, are roots of their own
max-heaps.

• The procedure loops down to the first node until all sub-heaps have been
max-heapified.

15

Why does this work?

Building a heap from an array (Cormen et al.).

16

Why does this work?

Building a heap from an array (Cormen et al.).

17

Why does this work?

Building a heap from an array (Cormen et al.).

18

Analysis of Heapsort

Heapsort

The call to max_heapify is…

O(lg n).

The loop in build_max_heap runs… O(n) times.

19

Heapsort

The call to max_heapify is… O(lg n).

The loop in build_max_heap runs…

O(n) times.

19

Heapsort

The call to max_heapify is… O(lg n).

The loop in build_max_heap runs… O(n) times.

19

Alex

Heapsort

Heapsort

def heapsort(A):
build_max_heap(A)
heap_size = len(A)
for i in range(len(A) - 1, 0, -1):

A[0], A[i] = A[i], A[0]
heap_size -= 1
max_heapify(A, 0, heap_size)

20

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Analysis

• Start by building a max-heap on the input array - O(n).

• Take the root element out of the heap and run max_heapify to maintain the
max-heap property - O(n lg n).

21

Analysis

• Start by building a max-heap on the input array - O(n).

• Take the root element out of the heap and run max_heapify to maintain the
max-heap property - O(n lg n).

21

Heapsort

Example of Heapsort (Cormen et al.).

22

Heapsort

Example of Heapsort (Cormen et al.).

23

Heapsort

Example of Heapsort (Cormen et al.).

24

Heapsort

Example of Heapsort (Cormen et al.).

25

Priority Queues

Priority Queues

What is it?

• A key-value data structure where each key has a priority.
• The elements are processed as a queue.
• Implemented with either a min-heap or max-heap (depending on the use
case).

26

Priority Queues

What is it?

• A key-value data structure where each key has a priority.
• The elements are processed as a queue.
• Implemented with either a min-heap or max-heap (depending on the use
case).

26

Priority Queues

Operations

• Insert: Add a new element to the queue.
• Extract: Remove and return the element with the highest/lowest priority.
• Max/Min: Return the element with the highest/lowest priority without
removing it.

• Increase/Decrease Key: Change the priority of an element.

27

Priority Queue: Insert

1. Add the new element to the end of the array.
2. Set the new element’s priority to −∞ (for max-heap) or ∞ (for min-heap).
3. Use the Increase/Decrease Key operation to set the correct priority.

28

Priority Queue: Insert

def max_heap_insert(A, obj, n):
if len(A) == n:

raise ValueError("Heap overflow")
key = float("-inf")
obj.key = key
A.append(obj)
map obj to the last index -- dependent on the implementation
max_heap_increase_key(A, obj, key)

29

Alex

Alex

Priority Queue: Extract

1. Grab the root element (max or min).
2. Replace the root with the last element in the array.
3. Remove the last element.
4. Call max_heapify or min_heapify on the root to maintain the heap property.

30

Priority Queue: Extract

def max_heap_maximum(A):
if len(A) < 1:

raise ValueError("Heap underflow")
return A[0]

def max_heap_extract_max(A):
max_val = max_heap_maximum(A)
A[0] = A[-1]
A.pop()
max_heapify(A, 0)
return max_val

31

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Priority Queue: Increase Key

1. Check if the new key is smaller than the current key.
2. Set the element’s key to the new key.
3. While the element is not the root and its parent’s key is less than the

element’s key:
3.1 Swap the element with its parent.
3.2 Move up to the parent’s index.

32

Priority Queue: Increase Key

def max_heap_increase_key(A, obj, key):
if key < obj.key:

raise ValueError("New key is smaller than current key")
obj.key = key
i = A.index(obj) # gets the index of the object
while i > 0 and A[parent(i)].key < A[i].key:

A[i], A[parent(i)] = A[parent(i)], A[i]
i = parent(i)

33

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Class Exercise

Implement a minimum priority queue using a min-heap.

34

	Introduction
	Maintaining the Heap Property
	Building the Heap
	Analysis of Heapsort
	Heapsort
	Priority Queues

