
Medians and Order Statistics
CSE 5311: Design and Analysis of Algorithms

Alex Dillhoff

The University of Texas at Arlington

Introduction

Order Statistics

Minimum and Maximum

Selection in Expected Linear Time

Selection in Worst-Case Linear Time

Introduction

0

Introduction

Computing medians and order statistics has many applications in computer
science, signal processing, data analysis, and machine learning, for example.

This lecture reviews the basic concepts of medians and order statistics, and
presents algorithms for computing them.

1

Applications

Computer Science

• Optimizing Quicksort: the median-of-medians algorithm can be used to
select a good pivot.

• Quickselect: a selection algorithm that finds the kth smallest element in an
unsorted list.

2

Applications

Image Processing

• Median Filtering: a nonlinear digital filtering technique that removes noise
from an image.

• Temporal Noise Reduction: medians can be used across temporal sequences
to reduce noise.

3

Applications

Data Analysis

• Percentiles and Quantiles: medians are a special case of percentiles.

• Robust Statistics: medians are more robust to outliers than means.

4

Applications

Machine Learning

• Feature Engineering: medians capture the variability or skewness, which can
lead to more robust models.

• Anomaly Detection: medians can be used to detect outliers in data.

5

Order Statistics

Order Statistics

The ith order statistic is the ith smallest element in a set of n elements.

The median is the n
2
th order statistic.

6

Alex

Alex

Order Statistics

The minimum and maximum are the 1st and nth order statistics, respectively.

When n is even, there are two medians:

1. the lower median n
2
th and

2. the upper median n
2 + 1th.

7

Order Statistics

The goal for this lecture is to investigate two different approaches for computing
order statistics:

1. A linear time algorithm

2. A divide-and-conquer approach

8

Minimum and Maximum

Minimum and Maximum

What is the lower bound on the number of comparisons needed to find either
the maximum or minimum of a set of n elements?

n-1 comparisons

9

Alex

Alex

Alex

Minimum and Maximum

What is the lower bound on the number of comparisons needed to find either
the maximum or minimum of a set of n elements?

n-1 comparisons

9

Minimum and Maximum

One such argument could be that if we left even 1 comparison out of the n− 1
comparisons, we could not guarantee that we had found the minimum or
maximum.

When implementing an algorithm, it is reasonable to conclude that an optimal
implementation would require n− 1 comparisons.

10

Minimum and Maximum

There are plenty of algorithms that we implement which are not optimal in terms
of their theoretical lower bound.

Consider a naive matrix multiplication algorithm: there are many redundant
reads from memory in this algorithm.

11

Minimum and Maximum

For example, if we compute C = AB, we need to calculate the output values C1,1
and C1,2, among others.

Both of these outputs require reading from the first row of A.

12

Minimum and Maximum

We could find both the minimum and maximum of a set in 2n− 2 operations by
passing over the set twice.

This is theoretically optimal since each pass is performing the optimal n− 1
comparisons.

13

Minimum and Maximum

Can we do this with a single pass?

• Compare a pair of elements with each other.

• Compare them to the minimum and maximum.

• Total comparisons: 3
⌊n
2
⌋
comparisons.

14

Minimum and Maximum

Can we do this with a single pass?

• Compare a pair of elements with each other.

• Compare them to the minimum and maximum.

• Total comparisons: 3
⌊n
2
⌋
comparisons.

14

Alex

Alex

Alex

Selection in Expected Linear Time

Selection in Expected Linear Time

We now turn to the problem of selection.

Given a set of n elements and an integer i, we want to find the ith order statistic.

Assumptions:

• All elements are distinct.
• i is between 1 and n.

15

Alex

Alex

Alex

Alex

Selection in Expected Linear Time

The randomized select algorithm returns the ith smallest element of an array
bounded between indices p and r.

It relies on randomized_partition, just like Quicksort.

16

Alex

Randomized Select

def randomized_select(A, p, r, i):
if p == r:

return A[p]
q = randomized_partition(A, p, r)
k = q - p + 1
if i == k:

return A[q]
elif i < k:

return randomized_select(A, p, q-1, i)
else:

return randomized_select(A, q+1, r, i-k)

17

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Randomized Select

Example: Find median in A = [3, 2, 6, 1, 5, 4, 7]

18

Analysis

The worst-case running time of randomized_select is O(n2) since we are
partitioning n elements at Θ(n) each.

Since the pivot of randomized_partition is selected at random, we can expect a
good split at least every 2 times it is called.

19

Alex

Alex

Alex

Alex

Alex

Alex

Analysis

The proof for this is similar to the one made when analyzing Quicksort.

The expected number of times we must partition before we get a helpful split is 2,
which only doubles the running time.

The recurrence is still T(n) = T(3n/4) + Θ(n) = Θ(n).

20

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Analysis

The first step to showing that the expected runtime of randomized_select is
Θ(n) is…

Show that a partitioning is helpful with probability at least 1
2 .

21

Analysis

Terms

• hi is the event that the ith partitioning is helpful.
• {h0,h1, . . . ,hm} is the sequence of helpful partitionings.
• nk = |A(hk)| is the number of elements in the subarray A(hk) at the kth

partitioning.
• nk ≤ (3/4)nk−1 for k ≥ 1, or nk ≤ (3/4)kn0.
• Xk = hk+1 − hk is the number of unhelpful partitionings between the kth and
(k+ 1)th helpful partitionings.

22

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Analysis

There are certainly partitionings that are not helpful.

These are depicted as subarrays within each generation of helpful partitionings.

23

Analysis

The sets within each generation of helpful partitionings are not helpful.

24

Alex

Alex

Alex

Analysis

Given that the probability that a partitioning is helpful is at least 1
2 , we know that

E[Xk] ≤ 2.

An upper bound on the number of comparisons of partitioning can be derived.

25

Alex

Alex

Alex

Analysis

The total number of comparisons made when partitioning is less than

m−1∑
k=0

hk+Xk−1∑
j=hk

|A(j)| ≤
m−1∑
k=0

hk+Xk−1∑
j=hk

|A(hk)|

=
m−1∑
k=0

Xk|A(hk)|

≤
m−1∑
k=0

Xk
(
3
4

)k
n0.

26

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Analysis

The first term on the first line represents the total number of comparisons
across all sets.

The first sum loops through the m helpful partitionings, and the inner loop sums
the number of comparisons made for each unhelpful partitioning.

m−1∑
k=0

hk+Xk−1∑
j=hk

|A(j)|

27

Alex

Analysis

It is bounded by the term on the right.

This is because |A(j)| ≤ |A(hk)| if A(j) is in the kth generation of helpful
partitionings. Based on the following:

nk ≤ (3/4)nk−1 for k ≥ 1, or nk ≤ (3/4)kn0.

28

Alex

Alex

Analysis

The second line is derived from the fifth term presented earlier:

Xk = hk+1 − hk is the number of unhelpful partitionings between the kth and
(k+ 1)th helpful partitionings.

m−1∑
k=0

Xk|A(hk)|

29

Alex

Alex

Analysis

The third line leverages term 4 again:

nk ≤ (3/4)nk−1 for k ≥ 1, or nk ≤ (3/4)kn0.

m−1∑
k=0

Xk
(
3
4

)k
n0.

30

Alex

Analysis

The sum is a geometric series, and the total number of comparisons is less than

E
[m−1∑
k=0

Xk
(
3
4

)k
n0

]
= n0

m−1∑
k=0

(
3
4

)k
E[Xk]

≤ 2n0
m−1∑
k=0

(
3
4

)k

< 2n0
∞∑
k=0

(
3
4

)k

= 8n0.

31

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Analysis

The last line is the result of a geometric series.

This concludes the proof that randomized_partition runs in expected linear
time.

32

Selection in Worst-Case Linear Time

Median of Medians

Finding the median value of a set can be performed in linear time without fully
sorting the data.

The recurrence is based on discarding a constant fraction of the elements at each
step.

We will later show that this algorithm runs in O(n) time.

33

Median of Medians

1. Divide: Partition the set into groups of 5 elements. Depending on the size of
the set, there may be less than 5 elements in the last set.

2. Conquer: Sort each group and find the median of each group. Since the
subsets are of constant size, this is done in constant time.

3. Combine: Given the median of each group from step 2, find the median of
medians. This value will be used as a pivot for the next step.

4. Partition: Use the pivot to separate values smaller and larger than the pivot.
5. Select: If the given pivot is the true median based on its position in the

original set, select it. If not, recursively select the median from the
appropriate partition.

34

Median of Medians

The median of medians algorithm. 35

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Median of Medians

• Each group is sorted in constant time using an algorithm like insertion sort.

• The median of each group is found in constant time.

• Call select recursively on a set of size n/5, this returns the pivot x in the
figure.

• The pivot is used to partition the set into two sets: A[1, . . . , q− 1] and
A[q+ 1, . . . ,n].

36

Alex

Alex

Alex

Alex

<title>

The partitioning call will return the index q of the pivot x.

• Depending on where the pivot q ended up, the relative index k of the ith

order statistic needs to be computed.
• If i = k, the pivot is the ith order statistic.
• If i < k, the ith order statistic is in the left partition.
• If i > k, the ith order statistic is in the right partition.

37

Median of Medians

Example: Median of Medians implementation.

38

Analysis

The first while loop in the select function runs in O(n) time.

Its purpose is to ensure that the input is partitioned into groups of 5 elements.

39

Analysis

Its purpose is to ensure that the input is partitioned into groups of 5 elements.

• If the input is not divisible by 5, put the smallest element at the beginning of
the array.

• If we wanted the smallest element, we are done.
• Otherwise increment p and decrement i so it is no longer in consideration.
• Each loop runs in O(n) time and will be executed at most 4 times.

40

Analysis

Sorting the groups

Sorting each group is done in constant time since the groups have constant size.

There are g ≤ n/5 groups, so the total cost is O(n).

41

Analysis

First recursive call to select

Finding the median of medians via the first recursive call to select yields a
recurrence of T(n/5).

42

Analysis

Partitioning around the pivot

As seen with Quicksort, partitioning around the pivot is done in O(n) time.

43

Analysis

Second recursive call to select

One of two other recursive calls to select is made.

This call is made on a set of size at most 7n/10.

To understand why, let’s review the figure from before.

44

Analysis

The median of medians algorithm. 45

Analysis

The upper-right region contains ⌊g/2⌋+ 1 groups.

This means that at least 3(⌊g/2⌋+ 1) ≥ 3g/2 elements are greater than or equal
to the pivot.

46

Analysis

The lower-left region contains ⌈g/2⌉ groups.

This means that at least 3⌈g/2⌉ elements are less than or equal to the pivot.

47

Analysis

In either case, the recursive call excludes ≥ 3g/2 elements.

This leaves 5g− 3g/2 = 7g/2 ≤ 7n/10 elements.

48

Analysis

Adding this up yields the following recurrence:

T(n) ≤ T(n/5) + T(7n/10) + Θ(n)

49

Analysis

We now show that T(n) ≤ cn for some constant c.

Assume n ≥ 5.

T(n) ≤ c(n/5) + c(7n/10) + Θ(n)
≤ 9cn/10+Θ(n)
= cn− cn/10+Θ(n)
≤ cn.

50

	Introduction
	Order Statistics
	Minimum and Maximum
	Selection in Expected Linear Time
	Selection in Worst-Case Linear Time

