Medians and Order Statistics
CSE 5311: Design and Analysis of Algorithms

Alex Dillhoff

The University of Texas at Arlington

Introduction

Order Statistics

Minimum and Maximum

Selection in Expected Linear Time

Selection in Worst-Case Linear Time

Introduction

Introduction

Computing medians and order statistics has many applications in computer
science, signal processing, data analysis, and machine learning, for example.

This lecture reviews the basic concepts of medians and order statistics, and
presents algorithms for computing them.

Applications

Computer Science

- Optimizing Quicksort: the median-of-medians algorithm can be used to
select a good pivot.

- Quickselect: a selection algorithm that finds the kth smallest element in an
unsorted list.

Applications

Image Processing

- Median Filtering: a nonlinear digital filtering technique that removes noise
from an image.

- Temporal Noise Reduction: medians can be used across temporal sequences
to reduce noise.

Applications

Data Analysis

- Percentiles and Quantiles: medians are a special case of percentiles.

- Robust Statistics: medians are more robust to outliers than means.

Applications

Machine Learning

- Feature Engineering: medians capture the variability or skewness, which can
lead to more robust models.

- Anomaly Detection: medians can be used to detect outliers in data.

Order Statistics

Order Statistics

The [t order statistic is the i smallest element in a set of n elements.

The median is thrder statistic.

Alex

Alex

Order Statistics

The minimum and maximum are the 15t and nt" order statistics, respectively.

When n is even, there are two medians:

1. the lower median gth and

~ th
2. the upper median 4§ + 1.

Order Statistics

The goal for this lecture is to investigate two different approaches for computing
order statistics:

1. Alinear time algorithm

2. A divide-and-conquer approach

Minimum and Maximum

Minimum and Maximum

What is the lower bound on the number of comparisons needed to find either
the maximum or minimum of a set of n elements? [< \8, 2, \S ,L-)
(

M(,*,.\V\AL* "'D ’L 7
2 T

Alex

Alex

Alex

Minimum and Maximum

What is the lower bound on the number of comparisons needed to find either
the maximum or minimum of a set of n elements?

n-1 comparisons

Minimum and Maximum

One such argument could be that if we left even 1 comparison out of the n — 1
comparisons, we could not guarantee that we had found the minimum or
maximum.

When implementing an algorithm, it is reasonable to conclude that an optimal
implementation would require n — 1 comparisons.

10

Minimum and Maximum

There are plenty of algorithms that we implement which are not optimal in terms
of their theoretical lower bound.

Consider a naive matrix multiplication algorithm: there are many redundant
reads from memory in this algorithm.

1

Minimum and Maximum

For example, if we compute C = AB, we need to calculate the output values Cy
and Gy, among others.

Both of these outputs require reading from the first row of A.

12

Minimum and Maximum

We could find both the minimum and maximum of a set in 2n — 2 operations by
passing over the set twice.

This is theoretically optimal since each pass is performing the optimal n — 1
comparisons.

13

Minimum and Maximum

Can we do this with a single pass?

Minimum and Maximum

[{\ \O | ®, \C‘b'\‘)

N : =S
Can we do this with a single pass? '™ 4
‘(\,\thg
- Compare a pair of elements with each other.
- Compare them to the minimum and maximum.

- Total comparisons: 3 | 4| comparisons.

Alex

Alex

Alex

Selection in Expected Linear Time

Selection in Expected Linear Time

We now turn to the problem of selection.
—

Given a set of n elements and and/inteéer i, we want to find the it order statistic.

,)

Assumptions:

- All elements are distinct.

. Lis between 1 and n.

15

Alex

Alex

Alex

Alex

Selection in Expected Linear Time

The randomized select algorithm returns the it" smallest element of an array
bounded between indices p and r.

It relies on randomized_partition, just like Quicksort.

Alex

Randomized Select

[? "L (10, §'°‘,'—l) ‘1:3
v, =

’) -
def randomized_select(A, p, r, i): p= =% °
if == r:
* P L’sl [} lq) S 7 (O)
return A[p] i=3
q = randomized_partition(A, p, 1)
k=q-p+1 k< Y ‘x
o (3,21
return y
elif i < k: [I,'Z'@
return randomized_select(A, p, q-1, i)
S, Py 42 27
else: ‘L=2,D v\=3

return randomized_select(A, g+1, r, i-k)

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Randomized Select

Example: Find medianin A = [3,2,6,1,5,4,7]

The worst-case running time of randomized_select is O(n?) since we are
partitioning n elements at ©(n) each.

Since the pivot of randomized_partition is selected at random, we can e{peci a

ood split at least every 2 times it is called. =253
gooasp y . w\f 3
\ =~
== \
A U

Alex

Alex

Alex

Alex

Alex

Alex

The proof for this is similar to the one made when analyzing Quicksort.

The expected number of times we must partition before ngeta helpful S |t |s 2,
which only doubles the running time. X "

The recurrence is still T(n) = T(3n/4) + ©(n) = ©(n ‘\'e =V\

0=\ \03

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

The first step to showing that the expected runtime of randomized_select IS
O(n) is...

Show that a partitioning is helpful with probability at least 1.

21

Terms

- hj is the event that the i'" partitioning is helpful.
- {ho, hq,...,hn} is the sequence of helpful partitionings.

* N = |[A)] is the number of elements in the subarray A" at the k"
partitioning.
* Np < (3/4)np_q for R > 1, or n, < (3/4)kno.
— -

* Xp = hpyq — h is the number of unhelpful partitionings between the k" and

(R + 1) helpful partitionings.

22

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

There are certainly partitionings that are not helpful.

These are depicted as subarrays within each generation of helpful partitionings.

23

I EIWSS
(A(D)>
A

A® -
Ai+2) AU‘Z_U
@ A(hk 1) o
A At
A(hk+7-)A(hk71_l)
A+
. A(hm)
1
— — —
generation 0 generation 1 generation k

The sets within each generation of helpful partitionings are not helpful.

24

Alex

Alex

Alex

Given that the probability that a partitioning is helpful is at leas@we know that
E[Xe] < 2.
_—

An upper bound on the number of comparisons of partitioning can be derived.
w

25

Alex

Alex

Alex

The total number of comparisons made when partitioning is less than

26

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

The first term on the first line represents the total number of comparisons
across all sets.

The first sum loops through the m helpful partitionings, and the inner loop sums
the number of comparisons made for each unhelpful partitioning.

m— 1hfg+Xk 1

Z Z 1)|

/?thh

27

Alex

It is bounded by the term on the right.

This is because |[AV)| < |A(W)| if AU) is in the k" generation of helpful
partitionings. Based on the following:

N, < (3/4)Nk_q Yor kR > 1, orfny, < (3/4)*ng.

28

Alex

Alex

The second line is derived from the fifth term presented earlier:

X = hpq — hy is the number of unhelpful partitionings between the k™" and
(k 4+ 1) helpful partitionings.

S
XA
O 4\

3

=
Il

29

Alex

Alex

The third line leverages term 4 again:

Ny, < (3/4)Nk_q for R >1, or n, < (3/4)*ng.

30

Alex

The sum is a geometric series, and the total number of comparisons is less than

31

Alex

Alex

Alex

Alex

Alex

Alex

Alex

The last line is the result of a geometric series.

This concludes the proof that randomized_partition runs in expected linear
time.

32

Selection in Worst-Case Linear Time

Median of Medians

Finding the median value of a set can be performed in linear time without fully
sorting the data.

The recurrence is based on discarding a constant fraction of the elements at each
step.

We will later show that this algorithm runs in O(n) time.

33

Median of Medians

1. Divide: Partition the set into groups of 5 elements. Depending on the size of
the set, there may be less than 5 elements in the last set.

2. Conquer: Sort each group and find the median of each group. Since the
subsets are of constant size, this is done in constant time.

3. Combine: Given the median of each group from step 2, find the median of
medians. This value will be used as a pivot for the next step.

4. Partition: Use the pivot to separate values smaller and larger than the pivot.

5. Select: If the given pivot is the true median based on its position in the
original set, select it. If not, recursively select the median from the
appropriate partition.

34

Median of Medians

z
1> 2\ - |g/2] + 1 >

- [g/2] ————>
< g

Y

The median of medians algorithm. =

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Median of Medians

- Each group is sorted in constant time using an algorithm like insertion sort.
- The median of each group is found in constant time.

- Call select recursively on a set of size n/5, this returns the pivot x in the

figure.

- The pivot is used to partition the set into two sets: A[1,...,q —1Land
Alg+1,...,n].
J

36

Alex

Alex

Alex

Alex

The partitioning call will return the index g of the pivot x.

- Depending on where the pivot g ended up, the relative index k of the ith
order statistic needs to be computed.

- If i = k, the pivot is the it" order statistic.
- If i < k, the it order statistic is in the left partition.
- If i > R, the i order statistic is in the right partition.

37

Median of Medians

Example: Median of Medians implementation.

38

The first while loop in the select function runs in O(n) time.

Its purpose is to ensure that the input is partitioned into groups of 5 elements.

39

Its purpose is to ensure that the input is partitioned into groups of 5 elements.

- If the input is not divisible by 5, put the smallest element at the beginning of
the array.

- If we wanted the smallest element, we are done.
- Otherwise increment p and decrement i so it is no longer in consideration.

- Each loop runs in O(n) time and will be executed at most 4 times.

40

Sorting the groups

Sorting each group is done in constant time since the groups have constant size.

There are g < n/5 groups, so the total cost is O(n).

41

First recursive call to select

Finding the median of medians via the first recursive call to select yields a
recurrence of T(n/5).

42

Partitioning around the pivot

As seen with Quicksort, partitioning around the pivot is done in O(n) time.

43

Second recursive call to select

One of two other recursive calls to select is made.
This call is made on a set of size at most 7n/10.

To understand why, let’s review the figure from before.

44

- g2+ —— >
~ ~

.

<« [g/2] ———>

< g

Y

The median of medians algorithm. 5

The upper-right region contains |g/2] + 1 groups.

This means that at least 3(|g/2] + 1) > 3g/2 elements are greater than or equal
to the pivot.

46

The lower-left region contains [g/2] groups.

This means that at least 3[g/2] elements are less than or equal to the pivot.

47

In either case, the recursive call excludes > 3g/2 elements.

This leaves 5g — 3g/2 = 7g/2 < 7n/10 elements.

48

Adding this up yields the following recurrence:

T(n) < T(n/5)+ T(7n/10) + ©(n)

49

We now show that T(n) < cn for some constant c.
Assume n > 5.
T(n) < c(n/5) + c(7n/10) + ©(n)
<9cn/10 + O(n)

=cn—cn/10 + O(n)
<cn.

50

	Introduction
	Order Statistics
	Minimum and Maximum
	Selection in Expected Linear Time
	Selection in Worst-Case Linear Time

