CSE 5311: Design and Analysis of Algorithms

Minimum Spanning Trees

Alex Dillhoff

University of Texas at Arlington



Minimum Spanning Trees

Minimum spanning trees are undirected graphs that connect all of the vertices
such that there are no redundant edges and the total weight is minimized.

They are useful for finding the shortest path between two points in a graph.



Minimum Spanning Trees

An example graph with edge weights listed.



Minimum Sanning Trees

The minimum spanning tree



Minimum Spanning Trees

Other useful application of MSTs include

e network design: it is useful to know the least expensive path with respect
to either latency or resource cost for telecommunications networks,
transportation networks, or electrical grids.

e approximation algorithms: MSTs can be used to approximate the
solution to the traveling salesman problem.

e clustering: MSTs can be used to cluster data points in a graph.

e image segmentation: MSTs can be used to segment images into smaller
regions.



What is a Minimum Spanning
Tree



Let G be a connected, undirected graph with edges E, vertices V, and edge

weights w.

A minimum spanning tree is a subset T C E that connects all of the vertices

such that the total weight is minimized.



An undirected graph G.



9,0
O O
©)6

A minimum spanning tree of G.



Finding the MST




Finding the MST

There are two greedy algorithms for finding the minimum spanning tree of a
graph.

1. Kruskal's algorithm
2. Prim’s algorithm



Finding the MST

The general algorithm for finding the minimum spanning tree of a graph grows a
set of edges T from an empty set.

At each step, the algorithm adds the edge with the smallest weight that does not
create a cycle.

The algorithm terminates when T is a complete tree.

10



Finding the MST

T ={}
while T is not a spaning tree
find the edge e with the smallest weight that does not create a cycle

T = T union {e}

11



Finding the MST

Each edge e that is added must result in a tree that is a subset of the minimum

spanning tree.
The challenge of this algorithm is actually finding such an edge.
How would we know such an edge if we saw it?

We first need to define a few properties which will shine light on this.

12



Finding the MST

8/6\7
l_/z 9 IS
SRy s
h T o

An example of a cut in a graph (Cormen et al.).

13



Finding the MST

A cut of a graph G is a partition of the vertices V into two disjoint sets S and
vV -S.

An edge e crosses the cut if one of its endpoints is in S and the other is in
V-S.

If no edge in a given set E crosses the cut, then that cut respects E.

14



Finding the MST

An edge that is the minimum weight edge that crosses a cut is called a light
edge.

With these definitions, we can now formally define how to find a safe edge,

which is an edge that can be added to the current set of edges T without
creating a cycle.

15



Finding the MST

Theorem 21.1 from Cormen et al.

Let G = (V, E) be a connected, undirected graph with a real-valued weight
function w defined on E.

Let A be a subset of E that is included in some minimum spanning tree for G, let
(S,V — S) be any cut of G that respects A, and let e be a light edge crossing
(S,Vv-25).

Then, edge e is safe for A.

16



Finding the MST

Visualization of proof of Theorem 21.1 from Cormen et al.
17



Finding the MST

The two sets in the figure above represent vertices in S (orange) and vertices in
V — S (tan).

T is the original MST depicted in the figure.
The dotted line is the new edge (u, v) to consider.
A is a subset of edges in T represented by the blue lines.

If the safe edge (u, v) is already in the original MST T, then we are done.

18



Finding the MST

The vertices u and v lie on opposite sides of the cut.

The edge (u, v) would introduce a cycle since there is already a path from v to v
in T that crosses the cut via (x, y).

Since both (v, v) and (x, y) are light edges that cross the cut, then it must be
that w(u, v) < w(x,y).

19



Finding the MST

Visualization of proof of Theorem 21.1 from Cormen et al.
20



Finding the MST

Let T’ be the minimum spanning tree with (x, y) replaced by (u, v). That is
T=T- {(X>y)} U {(U, V)}

Since T is a minimum spanning tree, then w(T) < w(T’).
Then T’ is also a minimum spanning tree.

Therefore, (u, v) is safe for A.

21



Finding the MST

Figure 1: Visualize proof of Theorem 21.1 from Cormen et al.
22



Finding the MST

Corollary 21.2 from Cormen et al.

We can also view this in terms of connected components, which are subsets of
vertices that are connected by a path.

If C and C’ are two connected components in T and (u, v) is a light edge
connecting C and C’, then (u, v) is safe for T.

23



Finding the MST

(4) Oa0
(6) o (6)
© 2 G

Figure 2: Connected components of a graph. The red line in the right graph is a safe
edge.

24



Kruskal’'s Algorithm




Kruskal’s Algorithm

The first solution to the minimum spanning tree that we will study is called
Kruskal’s algorithm.

This algorithm grows a forest of trees from an empty set.
At each step, the algorithm adds the lightest edge that does not create a cycle.

The algorithm terminates when the forest is a single tree.

23



Kruskal’s Algorithm

This can be viewed as an agglomerative clustering algorithm.
The algorithm starts with each vertex in its own cluster.
At each step, the algorithm merges the two clusters that are closest together.

The algorithm terminates when there is only one cluster.

26



Kruskal’s Algorithm

A={}
for each vertex v in G.V
MAKE-SET (v)
sort the edges of G.E into nondecreasing order by weight w
for each edge (u, v) in G.E, taken in nondecreasing order by weight
if FIND-SET(u) != FIND-SET(v)
A = A union {(u, v}
UNION(u, v)
return A

27



Kruskal’s Algorithm

A step-by-step example of an implementation in Python is available here.

28


https://github.com/ajdillhoff/python-examples/blob/main/data_structures/graphs/kruskals_algorithm.ipynb

The running time is dependent on how the disjoint-set of vertices is implemented.

In the best known case, a disjoint-set-forest implementation should be used.
Creating a list of edges takes O(E) time.

Sorting the edges takes O(E log E) time.

29



The for loop iterates over each edge, which is O(E).
All disjoint-set operations take O((V + E)a(V)) time.

Since the graph is connected, E > V — 1, so the total running time is
O(ElogE+ E+ Ea(V)) = O(ElogE + Ea(V)) = O(Elog V).

30



Prim’s Algorithm




Prim’s Algorithm

The second solution starts at an arbitrary vertex in a set A and adds a new vertex
to A in a greedy fashion.

To efficiently select a new edge to add, Prim’s algorithm uses a priority queue to
keep track of the lightest edge that crosses the cut.

The algorithm terminates when A is a complete tree.

31



Prim’s Algorithm

A={}
for each vertex v in G.V

key[v] = infinity

pilv] = NIL

key[r] = 0

Q =G.V

while Q is not empty
u = EXTRACT-MIN(Q)
A = A union {u}

for each vertex v in G.Adj[u]
if v in Q and w(u, v) < keyl[v]
pilvl =u
key[v] = w(u, v)
DECREASE-KEY (Q, v, key[v])
32



Prim’s Algorithm

Prim’s algorithm implicitly maintains the set A= {(v,v.7):ve V —{r} — Q},

where r is the root.

When the while loop terminates, A= {(v,v.7w) : v € V — {r}}, since the queue
is empty.

83



Prim’s Algorithm

The critical part of this is to understand how the algorithm changes the key
values.

For all vertices v € Q, if v.m # NIL, then v.key < co and v.key is the weight of
a light edge (v, v.7) that connects v to a vertex in A.

34



Prim’s Algorithm

A step-by-step example of an implementation in Python is available here.

85


https://github.com/ajdillhoff/python-examples/blob/main/data_structures/graphs/prims_algorithm.ipynb

Prim’s Algorithm

Prim's algorithm uses a priority queue to keep track of the lightest edge that
crosses the cut.

If the priority queue is implemented as a min-heap, which has a worst-case
running time of O(log V) for both EXTRACT-MIN and DECREASE-KEY.

36


https://www.cs.cmu.edu/~tcortina/15-121sp10/Unit06B.pdf

Prim’s Algorithm

The algorithm calls EXTRACT-MIN once for each vertex, which is O(V log V).
The algorithm calls DECREASE-KEY once for each edge, which is O(E log V).

The total running time is O(V log V + E log V') = O(E log V).

37



	What is a Minimum Spanning Tree
	Finding the MST
	Kruskal's Algorithm
	Prim's Algorithm

