
Quicksort
CSE 5311: Design and Analysis of Algorithms

Alex Dillhoff

The University of Texas at Arlington



Introduction

Basic Quicksort

Performance Analysis

Randomized Quicksort

Paranoid Quicksort



Introduction

0



Quicksort

Quicksort is a popular sorting algorith mimplemented in many language libraries.

It has a worst-case running time of Θ(n2)…

1



Quicksort

Why is it so popular if it has a worst-case running time of Θ(n2)?

• It has an average-case running time of Θ(n log n) if all values are distinct.
• It is an in-place sorting algorithm.
• It is cache-efficient.

2



Basic Quicksort



Basic Implementation

• Quicksort is a divide-and-conquer algorithm.

• Input: An array A and indices p and r.

• Output: The array A with elements in sorted order.

3



Basic Implementation

def quicksort(arr, p, r):
q = partition(arr, p, r)
quicksort(arr, p, q - 1)
quicksort(arr, q + 1, r)

4



Basic Implementation

• The details are in the partition function.

• This function rearranges the elements in the array such that:
• The pivot element is in its correct position.

• All elements less than the pivot are to the left of it.

• All elements greater than the pivot are to the right of it.

5



Basic Implementation

• The details are in the partition function.

• This function rearranges the elements in the array such that:
• The pivot element is in its correct position.

• All elements less than the pivot are to the left of it.

• All elements greater than the pivot are to the right of it.

5



Basic Implementation

• The details are in the partition function.

• This function rearranges the elements in the array such that:
• The pivot element is in its correct position.

• All elements less than the pivot are to the left of it.

• All elements greater than the pivot are to the right of it.

5



Partitioning

• The first or last element is chosen as the pivot.

• Picking it this way yields a fairly obvious recurrence of T(n) = T(n− 1) +O(n),
which is Θ(n2).

• There is no need for additional memory to store the sub-arrays: it is done
through a clever use of indices.

6



Partitioning

def partition(arr, p, r):
x = arr[r]
i = p - 1
for j in range(p, r):

if arr[j] <= x:
i += 1
arr[i], arr[j] = arr[j], arr[i]

arr[i + 1], arr[r] = arr[r], arr[i + 1]
return i + 1

7

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex



Partitioning

The indices are used to define the following loop invariant. x is the last element.

• Left: if p ≤ k ≤ i, then A[k] ≤ x
• Middle: if i+ 1 ≤ k ≤ j− 1, then A[k] > x
• Right: if k = r, then A[k] = x

8

Alex

Alex



Partitioning

Example: Partition the array A = [2, 8, 7, 1, 3, 5, 6, 4].

9

Alex

Alex

Alex

Alex

Alex

Alex

Alex



Partitioning

Result: Partitioning produces the array A = [2, 1, 3, 4, 7, 5, 6, 8].

10



Quicksort

Example: Given that the first partitioning step is complete, complete the sorting
of the array A = [2, 1, 3, 4, 7, 5, 6, 8] using quicksort.

11

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex



Performance Analysis



Analysis

Recursion Tree Analysis

Picking the smallest or largest value as the partition yields a bad split.

When does a split become acceptable?

12

Alex



Analysis

Recursion Tree Analysis

Suppose we always get a 9-to-1 split.

Intuitively this seems pretty bad, and you may think that there is no way we
would ever get this unlucky.

13



Analysis

Exercise: Draw the recursion tree for the case where we always get a 9-to-1 split.

14

Alex

Alex

Alex

Alex

Alex

Alex



Analysis

Recap

• The subtree for the 1
10 split bottoms out after being called log10 n times.

• Until this happens, the cost of each level of the tree is n.

• The right tree continues with an upper bound of ≤ n.

• The right tree completes after log10/9 n = Θ(lg n) levels.

15



Analysis

Best-case

In the best-case, the pivot is the median of the array and two balanced subarrays
are created:

1. one of size n/2 and

2. one of size ⌊(n− 1)/2⌋.

The recurrence is T(n) = 2T(n/2) + Θ(n), which is…

Θ(n log n).

16



Analysis

Best-case

In the best-case, the pivot is the median of the array and two balanced subarrays
are created:

1. one of size n/2 and

2. one of size ⌊(n− 1)/2⌋.

The recurrence is T(n) = 2T(n/2) + Θ(n), which is…Θ(n log n).

16



Lower bound

Using the substitution method, we can establish a lower bound.

Start with the fact that the partitioning produces two subproblems with a total
size of n− 1.

This gives the following recurrence:

T(n) = min
0≤q≤n−1

{T(q) + T(n− q− 1)}+Θ(n).

17



Lower bound

This gives the following recurrence:

T(n) = min
0≤q≤n−1

{T(q) + T(n− q− 1)}+Θ(n).

The minimum function here means we are looking for the value of q that
minimizes the sum of the two subproblems.

18



Lower Bound

Our hypothesis will be that

T(n) ≥ cn lg n = Ω(n lg n).

19



Lower Bound

Plugging in our hypothesis, we get

T(n) ≥ min
0≤q≤n−1

{cq lg q+ c(n− q− 1) lg(n− q− 1)}+Θ(n)

c min
0≤q≤n−1

{q lg q+ (n− q− 1) lg(n− q− 1)}+Θ(n).

20

Alex

Alex

Alex



Lower Bound

If we take the derivative of the function inside the minimum with respect to q, we
get

d
dq{q lg q+ (n− q− 1) lg(n− q− 1)}

= c{qq + lg q− lg(n− q− 1)− (n− q− 1)
(n− q− 1)}.

21



Lower Bound

Setting this equal to zero and solving for q yields

q =
n− 1
2 .

22



Lower Bound

We can then plug this value of q into the original function to get

T(n) ≥ cn− 1
2 lg

n− 1
2 + cn− 1

2 lg
n− 1
2 +Θ(n)

= cn lg(n− 1) + c(n− 1) + Θ(n)
= cn lg(n− 1) + Θ(n)
≥ cn lg n
= Ω(n lg n).

23



Average Case

The average-case running time is Θ(n log n).

Quicksort is highly dependent on the relative ordering of the input.

24



Average Case

Consider the case of a randomly ordered array.

• The cost of partitioning the original input is O(n).

• Let’s say that the pivot was the last element, yielding a split of 0 and n− 1.

25



Average Case

What if we get lucky on the next iteration and get a balanced split?

Even if the rest of the algorithm splits between the median and the last element,
the upper bound on the running time is Θ(n log n).

It is highly unlikely that the split will be unbalanced on every iteration given a
random initial ordering.

26



Average Case

What if we get lucky on the next iteration and get a balanced split?

Even if the rest of the algorithm splits between the median and the last element,
the upper bound on the running time is Θ(n log n).

It is highly unlikely that the split will be unbalanced on every iteration given a
random initial ordering.

26



Average Case

Formalize this by defining a lucky L(n) = 2U(n/2) + Θ(n) and an unlucky split
U(n) = L(n− 1) + Θ(n).

Solve for L(n) by plugging in the definition of U(n).

L(n) = 2U(n/2) + Θ(n)
= 2(L(n/2− 1) + Θ(n/2)) + Θ(n)
= 2L(n/2− 1) + Θ(n)
= Θ(n log n)

27



Randomized Quicksort



Randomized Quicksort

One would have to be extremely unlucky to get a quadratic running time if the
input is randomly ordered.

Randomized quicksort builds on this intuition by selecting a random pivot on
each iteration.

28



Randomized Quicksort

def randomized_partition(arr, p, r):
i = random.randint(p, r)
arr[i], arr[r] = arr[r], arr[i]
return partition(arr, p, r)

def randomized_quicksort(arr, p, r):
if p < r:

q = randomized_partition(arr, p, r)
randomized_quicksort(arr, p, q - 1)
randomized_quicksort(arr, q + 1, r)

29



Analysis

As long as each split puts a constant amount of elements to one side of the split,
then the running time is Θ(n log n).

We can understand this analysis simply by asking the right questions.

30



Analysis

1. What is the running time of Quicksort dependent on?

• The biggest bottleneck is the partitioning function.

• At most, we get really unlucky and the first pivot is picked every time.

• This means it is called n times yielding O(n).

• The variable part of this is figuring out X: the number of comparisons made.

• The running time is then O(n+ X).

31



Analysis

1. What is the running time of Quicksort dependent on?

• The biggest bottleneck is the partitioning function.

• At most, we get really unlucky and the first pivot is picked every time.

• This means it is called n times yielding O(n).

• The variable part of this is figuring out X: the number of comparisons made.

• The running time is then O(n+ X).

31



Analysis

1. What is the running time of Quicksort dependent on?

• The biggest bottleneck is the partitioning function.

• At most, we get really unlucky and the first pivot is picked every time.

• This means it is called n times yielding O(n).

• The variable part of this is figuring out X: the number of comparisons made.

• The running time is then O(n+ X).

31

Alex



Expected value of X

The number of comparisons can be expressed as

X =
n−1∑
i=1

n∑
j=i+1

Xij,

where Xij is the indicator random variable that is 1 if A[i] and A[j] are compared
and 0 otherwise.

32

Alex



Expected value of X

This works with our worst case analysis.

If we always get a split of 0 and n− 1, then the indicator random variable is 1 for
every comparison, yielding O(n2).

33



Expected value of X

Taking the expectation of both sides:

E[X] = E

n−1∑
i=1

n∑
j=i+1

Xij


=

n−1∑
i=1

n∑
j=i+1

E[Xij]

=
n−1∑
i=1

n∑
j=i+1

P(Xij = 1).

34



Expected value of X

What is P(Xij = 1)?

• Let zi, . . . , zj be the indices of elements in a sorted version of the array.

• Under this assumption, zi is compared to zj only if zi or zj is the first pivot
chosen from the subarray A[i . . . j].

• In a set of distinct elements, the probability of picking any pivot from the
array from i to j is 1

j−i+1 .

• This means that the probability of comparing zi and zj is 2
j−i+1 .

35



Expected value of X

What is P(Xij = 1)?

• Let zi, . . . , zj be the indices of elements in a sorted version of the array.

• Under this assumption, zi is compared to zj only if zi or zj is the first pivot
chosen from the subarray A[i . . . j].

• In a set of distinct elements, the probability of picking any pivot from the
array from i to j is 1

j−i+1 .

• This means that the probability of comparing zi and zj is 2
j−i+1 .

35



Expected value of X

What is P(Xij = 1)?

• Let zi, . . . , zj be the indices of elements in a sorted version of the array.

• Under this assumption, zi is compared to zj only if zi or zj is the first pivot
chosen from the subarray A[i . . . j].

• In a set of distinct elements, the probability of picking any pivot from the
array from i to j is 1

j−i+1 .

• This means that the probability of comparing zi and zj is 2
j−i+1 .

35



Expected value of X

What is P(Xij = 1)?

• Let zi, . . . , zj be the indices of elements in a sorted version of the array.

• Under this assumption, zi is compared to zj only if zi or zj is the first pivot
chosen from the subarray A[i . . . j].

• In a set of distinct elements, the probability of picking any pivot from the
array from i to j is 1

j−i+1 .

• This means that the probability of comparing zi and zj is 2
j−i+1 .

35



Expected value of X

E[X] =
n−1∑
i=1

n∑
j=i+1

2
j− i+ 1

=
n−1∑
i=1

n−i∑
k=1

2
k+ 1 change of variable k = j− i

<

n−1∑
i=1

n−i∑
k=1

2
k bounded by harmonic series

=
n−1∑
i=1

O(log n)

= O(n log n).
36



Paranoid Quicksort



Paranoid Quicksort

Repeat the following until the partitioning until the left or right subarray is less
than or equal to 3

4 of the original array.

1. Choose a random pivot.
2. Partition the array.
3. Verify that the left and right subarrays are less than or equal to 3

4 of the
original array; if not, repeat the partitioning.

4. Recursively sort the subarrays.

37



Analysis

Most of the analysis of Paranoid Quicksort follows that of randomized quicksort.

The focus is on the expected number of calls times partition is called until no
side of the split is greater than 3

4 of the input.

38



Analysis

Consider a sorted array of n distinct elements.

• The first and last n
4 elements would produce a bad split.

• That means there are n/2 values that provide a good split, implying that
p(good split) = 1

2 .

• Knowing the probability of this event means we can calculated the expected
number of times we should call partition before getting a good split, which
is 2.

39

https://math.stackexchange.com/questions/1196452/expected-value-of-the-number-of-flips-until-the-first-head
https://math.stackexchange.com/questions/1196452/expected-value-of-the-number-of-flips-until-the-first-head
Alex

Alex

Alex

Alex



Analysis

Continuing on with this analysis, we need to state the recurrence:

T(n) ≤ 2cn+ T(⌊3n/4)⌋) + T(⌈n/4⌉) + O(1)

The addition of 2cn is not enough to change our analysis from above.

Thus, the expected running time of Quicksort is O(n log n).

40


	Introduction
	Basic Quicksort
	Performance Analysis
	Randomized Quicksort
	Paranoid Quicksort

