Quicksort
CSE 5311: Design and Analysis of Algorithms

Alex Dillhoff

The University of Texas at Arlington



Introduction

Basic Quicksort

Performance Analysis

Randomized Quicksort

Paranoid Quicksort



Introduction



Quicksort is a popular sorting algorith mimplemented in many language libraries.

It has a worst-case running time of ©(n?)...



Why is it so popular if it has a worst-case running time of ©(n?)?

- It has an average-case running time of ©(nlogn) if all values are distinct.
- Itis an in-place sorting algorithm.
- Itis cache-efficient.



Basic Quicksort



Basic Implementation

- Quicksort is a divide-and-conquer algorithm.
- Input: An array A and indices p and r.

- Qutput: The array A with elements in sorted order.



Basic Implementation

def quicksort(arr, p, r):
q = partition(arr, p, r)
quicksort(arr, p, q - 1)
quicksort(arr, q + 1, r)



Basic Implementation

- The details are in the partition function.

- This function rearranges the elements in the array such that:
- The pivot element is in its correct position.



Basic Implementation

- The details are in the partition function.

- This function rearranges the elements in the array such that:
- The pivot element is in its correct position.

- All elements less than the pivot are to the left of it.



Basic Implementation

- The details are in the partition function.

- This function rearranges the elements in the array such that:
- The pivot element is in its correct position.

- All elements less than the pivot are to the left of it.

- All elements greater than the pivot are to the right of it.



Partitioning

- The first or last element is chosen as the pivot.

- Picking it this way yields a fairly obvious recurrence of T(n) = T(n — 1) + O(n),
which is ©(n?).

- There is no need for additional memory to store the sub-arrays: it is done
through a clever use of indices.



Partitioning

P =&

[Vv,2.2.¢.4)
L J

3
def partition(arr, p, r): T
x = arr[r]

i=p-1
for j in range(p, r):
if arr(j] <= x:
i+=1
arr[i], arr[j] = arr[j], arr[il
arr[i + 1], arr[r] = arr(r], arr[i + 1]

return i + 1


Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex


Partitioning

pooker ¥
end

The indices are used to define the following loop invariant. x is the last element.

- Left: if p < k <, then A[R] < x

- Middle: if i+1< k <j—1, then(Alk] > x )

- Right: if k = r, then A[R] = x


Alex

Alex


Partitioning

r=xX
Example: Partition the array A = [2,8,7,1,3,5,6, 4].

r)
[2}\,§.\{'7,§,6,$)
T 1


Alex

Alex

Alex

Alex

Alex

Alex

Alex


Partitioning

Result: Partitioning produces the array A = [2,1,3,4,7,5,6, 8|.

10



Example: Given that the first partitioning step is complete, complete the sorting
of the array A = [2,1,3,4,7,5, 6, 8] using quicksort.

[21 - ;) I.’-'L/“p\’%)
[2/.]\[53 (S,6,7) U)
"o ' 435 6

1

[()‘n?’ )?,‘g‘)


Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex


Performance Analysis



Recursion Tree Analysis

Picking the smallest or largest value as the partition yields a bad split.

When does a split become acceptable?

12


Alex


Recursion Tree Analysis

Suppose we always get a 9-to-1 split.

Intuitively this seems pretty bad, and you may think that there is no way we
would ever get this unlucky.

13



Exercise: Draw the recursion tree for the case where we always get a 9-to-1 split.

A 3

— "
¢ () ¢ (%) cv


Alex

Alex

Alex

Alex

Alex

Alex


Recap

- The subtree for the % split bottoms out after being called log;, n times.
- Until this happens, the cost of each level of the tree is n.
- The right tree continues with an upper bound of < n.

* The right tree completes after logyg o N1 = ©(lgn) levels.

15



Best-case

In the best-case, the pivot is the median of the array and two balanced subarrays
are created:

1. one of size n/2 and
2. one of size [(n —1)/2].

The recurrence is T(n) = 2T(n/2) + ©(n), which is...



Best-case

In the best-case, the pivot is the median of the array and two balanced subarrays
are created:

1. one of size n/2 and
2. one of size [(n —1)/2].

The recurrence is T(n) = 2T(n/2) + ©(n), which is..©(n log n).



Using the substitution method, we can establish a lower bound.

Start with the fact that the partitioning produces two subproblems with a total
size of n — 1.

This gives the following recurrence:

T(n)= min {T(q)+T(h—qg—"1)}+©(n).

0<q<n—1



This gives the following recurrence:

T(n)= _min {T(q)+T(n—qg—-"1)}+0O(n).

0<g<n-1

The minimum function here means we are looking for the value of g that
minimizes the sum of the two subproblems.



Our hypothesis will be that

T(n) > cnlgn =Q(nlgn).



U 3

T(n )>0,mm {cqlgg+c(n—qg—"1)lg(n—qg—"1)}+0O(n)

Plugging in our hypothesis, we get

ol Glzg o =g = Dl — g = U -2l

20


Alex

Alex

Alex


If we take the derivative of the function inside the minimum with respect to g, we
get

;;{qlqur(n—q—Ulg(”—q—”}

(n_q_1)}

:C{Z+|gq_lg(n_q_1)_(n_q_»])

21



Setting this equal to zero and solving for g yields

n—1

2

22



We can then plug this value of g into the original function to get

23



The average-case running time is ©(n log n).

Quicksort is highly dependent on the relative ordering of the input.

24



Consider the case of a randomly ordered array.
- The cost of partitioning the original input is O(n).

- Let's say that the pivot was the last element, yielding a split of 0 and n — 1.

25



What if we get lucky on the next iteration and get a balanced split?

26



What if we get lucky on the next iteration and get a balanced split?

Even if the rest of the algorithm splits between the median and the last element,
the upper bound on the running time is ©(nlog n).

It is highly unlikely that the split will be unbalanced on every iteration given a
random initial ordering.

26



Formalize this by defining a lucky L(n) = 2U(n/2) + ©(n) and an unlucky split
u(n) =L(n—1)+0O(n).

Solve for L(n) by plugging in the definition of U(n).
L(n) =2U(n/2) + ©(n)
=2(L(n/2=1)+©(n/2)) + ©(n)

=2L(n/2—-1)+0O(n)
= O(nlogn)

27



Randomized Quicksort




Randomized Quicksort

One would have to be extremely unlucky to get a quadratic running time if the
input is randomly ordered.

Randomized quicksort builds on this intuition by selecting a random pivot on
each iteration.

28



Randomized Quicksort

def randomized_partition(arr, p, r):
i = random.randint(p, r)
arr[i], arr[r] = arr([r], arrl[i]

return partition(arr, p, r)

def randomized_quicksort(arr, p, r):
if p < r:
q = randomized_partition(arr, p, r)
randomized_quicksort(arr, p, q - 1)

randomized_quicksort(arr, q + 1, r)

29



As long as each split puts a constant amount of elements to one side of the split,
then the running time is ©(nlog n).

We can understand this analysis simply by asking the right questions.

30



1. What is the running time of Quicksort dependent on?

31



1. What is the running time of Quicksort dependent on?

- The biggest bottleneck is the partitioning function.
- At most, we get really unlucky and the first pivot is picked every time.

- This means it is called n times yielding O(n).

31



1. What is the running time of Quicksort dependent on?

- The biggest bottleneck is the partitioning function.

- At most, we get really unlucky and the first pivot is picked every time.

- This means it is called n times yielding O(n).

- The variable part of this is figuring out@the number of comparisons made.

- The running time is then O(n + X).

——

31


Alex


Expected value of X

The number of comparisons can be expressed as

n—=1 n
=Y > %

i=1 j=it+1

where Xj; is the indicator random variable that is 1if A[i] and A[j] are compared
and 0 otherwise.

32


Alex


Expected value of X

This works with our worst case analysis.

If we always get a split of 0 and n — 1, then the indicator random variable is 1 for
every comparison, yielding O(n?).

33



Expected value of X

Taking the expectation of both sides:

34



Expected value of X

What is P(X,‘j = 1)?

- Letz,...,z be the indices of elements in a sorted version of the array.

35



Expected value of X

What is P(X,‘j = 1)?
- Letz,...,z be the indices of elements in a sorted version of the array.

- Under this assumption, z; is compared to z; only if z; or z; is the first pivot
chosen from the subarray Afi...J].

35



Expected value of X

What is P(X,‘j = 1)?

- Letz,...,z be the indices of elements in a sorted version of the array.

- Under this assumption, z; is compared to z; only if z; or z; is the first pivot
chosen from the subarray Afi...J].

- In a set of distinct elements, the probability of picking any pivot from the

20 fRe 1
array from i toj is =

35



Expected value of X

What is P(X,‘j = 1)?

- Letz,...,z be the indices of elements in a sorted version of the array.

- Under this assumption, z; is compared to z; only if z; or z; is the first pivot
chosen from the subarray Afi...J].

- In a set of distinct elements, the probability of picking any pivot from the
array fromjtojis

Jj— I—H
+ This means that the probability of comparing z; and z; is = /+1

35



Expected value of X

n—1 n 2
=22 =i

i=1 j=i+1
n—1n—i 2

=> > change of variable k = j — i
, R 41
i=1 k=1
n—1n—i 2

< Z " bounded by harmonic series
i=1 k=1
n—1

= O(log n)

36



Paranoid Quicksort




Paranoid Quicksort

Repeat the following until the partitioning until the left or right subarray is less
than or equal to % of the original array.

1. Choose a random pivot.

2. Partition the array.

3. Verify that the left and right subarrays are less than or equal to % of the
original array; if not, repeat the partitioning.

4. Recursively sort the subarrays.

37



Most of the analysis of Paranoid Quicksort follows that of randomized quicksort.

The focus is on the expected number of calls times partition is called until no
side of the split is greater than % of the input.

38



[oll’ 7, %, 94, 5/, (9,7,B’>1.‘0.'U

Consider a sorted array of n distinct elements.

- The first and last 7 elements would produce a bad split.

- That means there are n/2 values that provide a good split, implying that
p(good split) = 1.
- Knowing the probability of this event means we can calculated the expected

number of times we should call partition before getting a good split, which
is 2.

39


https://math.stackexchange.com/questions/1196452/expected-value-of-the-number-of-flips-until-the-first-head
https://math.stackexchange.com/questions/1196452/expected-value-of-the-number-of-flips-until-the-first-head
Alex

Alex

Alex

Alex


Continuing on with this analysis, we need to state the recurrence:

T(n) <2cn+T(|3n/4)]) + T([n/4]) + O(1)

The addition of 2cn is not enough to change our analysis from above.

Thus, the expected running time of Quicksort is O(nlogn).

40



	Introduction
	Basic Quicksort
	Performance Analysis
	Randomized Quicksort
	Paranoid Quicksort

