
CSE 5311: Design and Analysis of
Algorithms
Red-Black Trees

Alex Dillhoff

University of Texas at Arlington

1



Red-Black Trees

Red-Black Trees are modified Binary Search Trees that
maintain a balanced structure in order to guarantee that
operations like search, insert, and delete run in O(log n) time.

2



Red-Black Trees

A red-black tree is a binary search tree with the following
properties:

1. Every node is either red or black.
2. The root is black.
3. Every NULL leaf is black.
4. If a node is red, then both its children are black.
5. For each node, all simple paths from the node to

descendant leaves contain the same number of black
nodes.

3



Red-Black Trees

Figure 1: A red-black tree (Source: CRLS Chapter 13).

4



Red-Black Trees

The only structural addition we need to make over a BST is
the addition of a color attribute to each node. This attribute
can be either RED or BLACK.

Property 5 implies that the black-height of a tree is an
important property.

This property is used to prove that the height of a red-black
tree with n internal nodes is at most 2 log(n+ 1).

5



Operations



Rotate

If a Binary Search Tree is balanced, then searching for a node
takes O(log n) time.

If the tree is unbalanced, then searching can take O(n) time.

When items are inserted or deleted from a tree, it can become
unbalanced.

Without any way to correct for this, a BST is less desirable
unless the data will not change.

6



Rotate

When nodes are inserted or deleted into a red-black tree, the
rotation operation is used in functions that maintain the
red-black properties.

This ensures that the tree remains balanced and that
operations like search, insert, and delete run in O(log n) time.

7



Rotate

Figure 2: The rotation operation. (Source: CRLS Chapter 13).

8



Rotate

def left_rotate(self, x):
y = x.right
x.right = y.left
if y.left != self.nil:

y.left.p = x
y.p = x.p
if x.p == self.nil:

self.root = y
elif x == x.p.left:

x.p.left = y
else:

x.p.right = y
y.left = x
x.p = y

9



Rotate

def right_rotate(self, y):
x = y.left
y.left = x.right
if x.right != self.nil:

x.right.p = y
x.p = y.p
if y.p == self.nil:

self.root = x
elif y == y.p.left:

y.p.left = x
else:

y.p.right = x
x.right = y
y.p = x

10



Rotate

Figure 3: The rotation operation in action. (Source: CRLS Chapter 13). 11



Rotate

What is the upper bound on the running time of a rotation?

O(1). Only pointer assignments are updated.

12



Rotate

What is the upper bound on the running time of a rotation?

O(1). Only pointer assignments are updated.

12



Insert

The insert operation in a red-black tree starts off identically
to the insert operation in a BST.

The new node is inserted into the tree as a leaf node.

Since the NULL leaf nodes must be black by definition, the
added node is colored red.

13



Insert

def insert(self, z):
y = None
x = self.root
while x != None:

y = x
if z.key < x.key:

x = x.left
else:

x = x.right
z.p = y

if y == None:
self.root = z

elif z.key < y.key:
y.left = z

else:
y.right = z

z.left = None
z.right = None
z.color = RED
self.insert_fixup(z)

14



Insert

Example: insert the values 1, 2, and 3 in order.

15



Insert

By adding the node and setting its color to red, we have
possibly violated properties 2 and 4.

Property 2 is violated if z is the root.

Property 4 is violated if the parent of the new node is also
red.

The final line of the function calls insert_fixup to restore the
red-black properties.

16



Insert

The insert_fixup function starts from the perspective of the
newly inserted node z and continues while

1. z is not the root, and
2. z’s parent is red.

17



Insert Fixup: Case 1

Inside the while loop, the first and second conditions are
symmetric.

One considers the case where z’s parent is a left child, and
the other considers the case where z’s parent is a right child.

If z’s parent is a left child, then we start by setting y to z’s
aunt.

18



Insert Fixup: Case 1

Let’s investigate the first if statement, where y is RED.

In this case, both z’s parent and aunt are RED.

We can fix this by setting both to BLACK and setting z’s
grandparent to RED.

This may violate property 2, so we set z to its grandparent and
repeat the loop.

19



Insert Fixup: Case 1

if y.color == RED:
z.p.color = BLACK
y.color = BLACK
z.p.p.color = RED
z = z.p.p

20



Insert Fixup: Case 2

If y is BLACK, then we need to consider the case where z is a
right child.

In this case, we set z to its parent and perform a left rotation.

This automatically results in the third case, where z is a left
child.

21



Insert Fixup: Case 2

if z == z.p.right:
z = z.p
self.left_rotate(z)

22



Insert Fixup: Case 3

If z is a left child, then we set z’s parent to BLACK and its
grandparent to RED.

Then we perform a right rotation on the grandparent.

23



Insert Fixup: Case 3

z.p.color = BLACK
z.p.p.color = RED
self.right_rotate(z.p.p)

24



Insert Fixup

Figure 4: Insert Fixup cases. (Source: CRLS Chapter 13). 25



Delete



Delete

Like the delete operation of a BST, the delete operation of a
RBT uses a transplant operation to replace the deleted node
with its child.

The transplant operation is defined as follows.

26



Delete

def transplant(self, u, v):
if u.p == self.nil:

self.root = v
elif u == u.p.left:

u.p.left = v
else:

u.p.right = v
v.p = u.p

27



Delete

The full delete operation follows a similar structure to that of
its BST counterpart.

There are a few distinct differences based on the color of the
node being deleted.

28



Delete

def delete(self, z):
y = z
y_original_color = y.color

29



Delete

The first line sets y to the node to be deleted. The second line
saves the color of y.

This is necessary because y will be replaced by another node,
and we need to know the color of the replacement node.

30



Delete

The first two conditionals check if z has any children.

If there is a right child, then the z is replaced by the left child.

If there is a left child, then z is replaced by the right child.

If z has no children, then z is replaced by NULL.

31



Delete

if z.left == None:
x = z.right
self.transplant(z, z.right)

elif z.right == None:
x = z.left
self.transplant(z, z.left)

32



Delete

If z has two children, then we find the successor of z and set y
to it.

The successor is guaranteed to have at most one child, so we
can use the code above to replace y with its child.

Then we replace z with y.

33



Delete

else:
y = self.minimum(z.right)
y_original_color = y.color
x = y.right
if y != z.right: # y is farther down the tree

self.transplant(y, y.right)
y.right = z.right
y.right.p = y

else:
x.p = y

self.transplant(z, y)
y.left = z.left
y.left.p = y
y.color = z.color

34



Delete

The procedure kept track of y_original_color to see if any
violations occurred.

This would happen if y was originally BLACK because the
transplant operation, or the deletion itself, could have
violated the red-black properties.

If y_original_color is BLACK, then we call delete_fixup to
restore the properties.

35



Delete Fixup

If the node being deleted is BLACK, then the following
scenarios can occur.

If y is the root and a RED child of y becomes the new root,
property 2 is violated.

Let x be a RED child of y, if a new parent of x is RED, then
property 4 is violated.

Removing y may have caused a violation of property 5, since
any path containing y has 1 less BLACK node in it. 36



Delete Fixup

Correcting violation 5 can be done by transferring the BLACK
property from y to x, the node that moves into y’s original
position.

This requires us to allow nodes to take on multiple counts of
colors.

37



Delete Fixup

If x was already BLACK, it becomes double BLACK.

If it was RED, it becomes RED-AND-BLACK.

There is a good reason to this extension, as it will help us
decide which case of delete_fixup to use.

38



Delete Fixup

The delete_fixup function will restore violations of
properties 1, 2, and 4.

It is called after the delete operation, and it takes a single
argument, x, which is the node that replaced the deleted
node.

It performs a series of rotations and color changes to restore
the violated properties.

39



Delete Fixup

Let’s look at the delete_fixup function from the ground up.

It is a little more complex than insert_fixup because it has
to handle the case where the node being deleted is BLACK.

In total, there are 4 distinct cases per side.

40



Delete Fixup

Like insert_fixup, it is enough to understand the first half, as
the second is symmetric.

The function begins as follows, where x is a left child.

41



Delete Fixup - Case 1

def delete_fixup(self, x):
while x != self.root and x.color == BLACK:

if x == x.p.left:
w = x.p.right
if w.color == RED:

w.color = BLACK
x.p.color = RED
self.left_rotate(x.p)
w = x.p.right

42



Delete Fixup - Case 1

In the first case, x’s sibling w is RED.

If this is true, then w must have two BLACK subnodes.

The colors of w and x’s parent are then switched, and a left
rotation is performed on x’s parent.

The result of case 1 converts to one of cases 2, 3, or 4.

43



Delete Fixup - Case 1

Figure 5: Delete Fixup Case 1 (Source: CRLS Chapter 13).

44



Delete Fixup - Case 2

if w.left.color == BLACK and w.right.color == BLACK:
w.color = RED
x = x.p

45



Delete Fixup - Case 2

If both of w’s subnodes are BLACK and both w and x are also
black (actually, x is doubly BLACK )...

then there is an extra BLACK node on the path from w to the
leaves.

46



Delete Fixup - Case 2

The colors of both x and w are switched, which leaves x with a
single BLACK count and w as RED.

The extra BLACK property is transferred to x’s parent.

47



Delete Fixup - Case 2

Figure 6: Delete Fixup Case 2 (Source: CRLS Chapter 13).

48



Delete Fixup - Case 3

else:
if w.right.color == BLACK:

w.left.color = BLACK
w.color = RED
self.right_rotate(w)
w = x.p.right

49



Delete Fixup - Case 3

If w is BLACK, its left child is RED, and its right child is BLACK,
then the colors of w and its left child are switched.

Then a right rotation is performed on w.

This rotation moves the BLACK node to w’s position, which is
now the new sibling of x.

This leads directly to case 4.

50



Delete Fixup - Case 3

Figure 7: Delete Fixup Case 3 (Source: CRLS Chapter 13).

51



Delete Fixup - Case 4

w.color = x.p.color
x.p.color = BLACK
w.right.color = BLACK
self.left_rotate(x.p)
x = self.root

52



Delete Fixup - Case 4

At this point, w is BLACK and its right child is RED.

Also remember that x still holds an extra BLACK count.

This last case performs color changes and a left rotation
which remedy the extra BLACK count.

53



Delete Fixup - Case 4

Figure 8: Delete Fixup Case 4 (Source: CRLS Chapter 13).

54



Delete Runtime

The delete operation takes O(log n) time since it performs a
constant number of rotations.

The delete_fixup operation also takes O(log n) time since it
performs a constant number of color changes and at most 3
rotations.

Case 2 of delete_fixup could move the violation up the tree,
but this would happen no more than O(log n) times.

In total, the delete operation takes O(log n) time. 55


	Operations
	Delete

