
Sorting in Linear Time
CSE 5311: Design and Analysis of Algorithms

Alex Dillhoff

The University of Texas at Arlington



Introduction

Establishing a Lower Bound on Comparison Sorts

Counting Sort

Radix Sort

Bucket Sort

Alex



Introduction

0



Introduction

All sorting algorithms discussed up to this point are comparison based.

It may be intuitive to think that sorting cannot be done without a comparison.

If you have no way to evaluate the relative ordering of two different objects, how
can you possibly arrange them in any order?

1

Alex



Introduction

It turns out that comparison based sorts cannot possibly reach linear time.

Any comparison sort must make Ω(n lg n) comparisons in the worst case.

2

Alex



Establishing a Lower Bound on
Comparison Sorts



Establishing a Lower Bound

The basis of the proof is to consider that all comparison sorts can be viewed as a
decision tree.

Each leaf represents a unique permutation of the input array.

If there are n elements in the input array, there are n! possible permutations.

3



Establishing a Lower Bound

A decision tree for a comparison sort on a 3-element array.
4

Alex

Alex



Establishing a Lower Bound

Interpreting the tree

• Each node compares two values as a : b.

• If a ≤ b, the left path is taken.

• The worst case of a comparison sort can be determined by the height of the
tree.

5



Establishing a Lower Bound

Consider a binary tree of height h with l reachable leaves.

• Each of the n! permutations occurs as one of the leaves, so n! ≤ l since there
may be duplicate permutations in the leaves.

• A binary tree with height h has no more than 2h leaves, so n! ≤ l ≤ 2h.
• Taking the logarithm of this inequality implies that h ≥ lg n!.
• Since lg n! = Θ(n lg n), and is a lower bound on the height of the tree, then
any comparison sort must make Ω(n lg n) comparisons.

6

Alex

Alex

Alex



Establishing a Lower Bound

Consider a binary tree of height h with l reachable leaves.

• Each of the n! permutations occurs as one of the leaves, so n! ≤ l since there
may be duplicate permutations in the leaves.

• A binary tree with height h has no more than 2h leaves, so n! ≤ l ≤ 2h.

• Taking the logarithm of this inequality implies that h ≥ lg n!.
• Since lg n! = Θ(n lg n), and is a lower bound on the height of the tree, then
any comparison sort must make Ω(n lg n) comparisons.

6

Alex

Alex

Alex

Alex



Establishing a Lower Bound

Consider a binary tree of height h with l reachable leaves.

• Each of the n! permutations occurs as one of the leaves, so n! ≤ l since there
may be duplicate permutations in the leaves.

• A binary tree with height h has no more than 2h leaves, so n! ≤ l ≤ 2h.
• Taking the logarithm of this inequality implies that h ≥ lg n!.

• Since lg n! = Θ(n lg n), and is a lower bound on the height of the tree, then
any comparison sort must make Ω(n lg n) comparisons.

6

Alex

Alex



Establishing a Lower Bound

Consider a binary tree of height h with l reachable leaves.

• Each of the n! permutations occurs as one of the leaves, so n! ≤ l since there
may be duplicate permutations in the leaves.

• A binary tree with height h has no more than 2h leaves, so n! ≤ l ≤ 2h.
• Taking the logarithm of this inequality implies that h ≥ lg n!.
• Since lg n! = Θ(n lg n), and is a lower bound on the height of the tree, then
any comparison sort must make Ω(n lg n) comparisons.

6

Alex



Counting Sort

Alex



Counting Sort

Counting sort can sort an array of integers in O(n+ k) time, where k ≥ 0 is the
largest integer in the set.

It works by counting the number of elements less than or equal to each element
x.

7

Alex

Alex

Alex

Alex

Alex

Alex



Counting Sort

def counting_sort(A, k):
n = len(A)
B = [0 for i in range(n)]
C = [0 for i in range(k+1)]

for i in range(n):
C[A[i]] += 1

for i in range(1, k):
C[i] = C[i] + C[i-1]

for i in range(n - 1, -1, -1):
B[C[A[i]]-1] = A[i]
C[A[i]] = C[A[i]] - 1

return B
8

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex



Counting Sort

Walkthrough

• The first two loops establish the number of elements less than or equal to i
for each element i.

• The main sticking point in understanding this algorithm is the last loop.

• It starts at the very end of loop, placing the last element from A into the
output array B in its correct position as determined by C.

9



Counting Sort

Example

A = {2, 5, 5, 3, 4}.

• After the second loop, C = {0, 0, 1, 2, 3, 5}.

• On the first iteration of the last loop, A[4] = 4 is used as the index into C,
which yields 3 since the value 4 is greater than or equal to 3 elements in the
original array.

• It is then placed in the correct spot B[3− 1] = 4.

10



Counting Sort

Example

A = {2, 5, 5, 3, 4}.

• After the second loop, C = {0, 0, 1, 2, 3, 5}.
• On the first iteration of the last loop, A[4] = 4 is used as the index into C,
which yields 3 since the value 4 is greater than or equal to 3 elements in the
original array.

• It is then placed in the correct spot B[3− 1] = 4.

10



Counting Sort

Class Exercise: Sort the array A = {2, 5, 3, 0, 2, 3, 0, 3} using counting sort.

Do similar values maintain their relative order?

11

Alex

Alex



Radix Sort

Alex



Radix Sort

Dating back to 1887 by Herman Hollerith’s work on tabulating machines

• Places numbers in one of k bins based on their radix, or the number of
unique digits.

• It was used for sorting punch cards via multi-column sorting.

• It works by iteratively sorting a series of inputs based on a column starting
with the least-significant digit.

12

https://en.wikipedia.org/wiki/Tabulating_machine


Radix Sort

An example of radix sort sorting a list of integers.

13

Alex

Alex

Alex



Radix Sort

def radix_sort(A, d):
for i in range(d):

A = counting_sort(A, len(A), 9)
return A

14

Alex

Alex



Radix Sort

Analysis

• Counting sort is Θ(n+ k).

• Radix sort calls it d times.

• Therefore, the time complexity of radix sort is Θ(d(n+ k)).

• If k = O(n), then the time complexity is Θ(dn).

15



Radix Sort

Analysis

• Counting sort is Θ(n+ k).

• Radix sort calls it d times.

• Therefore, the time complexity of radix sort is Θ(d(n+ k)).

• If k = O(n), then the time complexity is Θ(dn).

15



Radix Sort

Analysis

• Counting sort is Θ(n+ k).

• Radix sort calls it d times.

• Therefore, the time complexity of radix sort is Θ(d(n+ k)).

• If k = O(n), then the time complexity is Θ(dn).

15

Alex



Radix Sort

Analysis

• Counting sort is Θ(n+ k).

• Radix sort calls it d times.

• Therefore, the time complexity of radix sort is Θ(d(n+ k)).

• If k = O(n), then the time complexity is Θ(dn).

15

Alex

Alex

Alex



Complex Keys

What if the data is not just a single integer, but a complex key or series of keys?

The keys themselves can be broken up into digits.

16

Alex

Alex

Alex



Complex Keys

What if the data is not just a single integer, but a complex key or series of keys?

The keys themselves can be broken up into digits.

16

Alex

Alex



Complex Keys

Consider a 32-bit word.

• To sort n of these words with b = 32 bits per word, break the words into r = 8
bit digits.

• This yields d = ⌈b/r⌉ = 4 digits.

• The largest value for each digit is then k = 2r − 1 = 255.

• Plugging these values into the analysis from above yields Θ((b/r)(n+ 2r)).

17

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex



Complex Keys

What is the best choice of r?

• As r increases, 2r increases.

• As it decreases, br increases.

• The best choice depends on whether b < ⌊lg n⌋.

18

Alex



Complex Keys

What is the best choice of r?

• As r increases, 2r increases.

• As it decreases, br increases.

• The best choice depends on whether b < ⌊lg n⌋.

18

Alex

Alex



Complex Keys

If b < ⌊lg n⌋, then r ≤ b implies (n+ 2r) = Θ(n) since 2lg n = n.

If b ≥ ⌊lg n⌋, then we should choose r ≈ lg n.

This would yield Θ((b/ lg n)(n+ n)) = Θ(bn/ lg n).

19

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex



Complex Keys

Another perspective…

Choosing r < lg n implies b
r > b

lg n ; the n+ 2r term doesn’t increase.

Choosing r > lg n implies an increase in n+ 2r.

20

Alex

Alex

Alex



Complex Keys

If we are given 216 32-bit words, we should use r = lg 216 = 16 bits.

This would result in ⌈ 3216⌉ = 2 passes.

21

Alex

Alex

Alex



Comparison to Quicksort and Merge sort

Consider an input of 1 million (220) 32-bit integers.

• Radix sort: 2 passes, each with O(n) time.

• Quicksort:

lg n = 20 passes, each with O(n) time.

• Merge sort: lg n = 20 passes, each with O(n) time.

22

Alex



Comparison to Quicksort and Merge sort

Consider an input of 1 million (220) 32-bit integers.

• Radix sort: 2 passes, each with O(n) time.

• Quicksort: lg n = 20 passes, each with O(n) time.

• Merge sort:

lg n = 20 passes, each with O(n) time.

22



Comparison to Quicksort and Merge sort

Consider an input of 1 million (220) 32-bit integers.

• Radix sort: 2 passes, each with O(n) time.

• Quicksort: lg n = 20 passes, each with O(n) time.

• Merge sort: lg n = 20 passes, each with O(n) time.

22

Alex

Alex

Alex



Example: Sorting Names

Use radix sort to sort the following list of names: ”Beethoven”, ”Bach”, ”Mozart”,
”Chopin”, ”Liszt”, ”Schubert”, ”Haydn”, ”Brahms”, ”Wagner”, ”Tchaikovsky”.

23

Alex



Example: Sorting Names

First, we need to figure out how to encode the names as integers.

• If we convert the input to lowercase, we only have to deal with k = 26 unique
characters.

• This only requires 5 bits.

• Since each name has varying length, we can use a sentinel value of 0 to pad
the shorter names.

• That is, 0 represents a padding character and the alphabet starts at 1.

24

Alex

Alex



Example: Sorting Names

Original Name Encoded Name
Beethoven [2, 5, 5, 20, 8, 15, 22, 5, 14, 0, 0]
Bach [2, 1, 3, 8, 0, 0, 0, 0, 0, 0, 0]
Mozart [13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
Chopin [3, 8, 15, 16, 9, 14, 0, 0, 0, 0, 0]
Liszt [12, 9, 19, 26, 20, 0, 0, 0, 0, 0, 0]
Schubert [19, 3, 8, 21, 2, 5, 18, 20, 0, 0, 0]
Haydn [8, 1, 25, 4, 14, 0, 0, 0, 0, 0, 0]
Brahms [2, 18, 1, 8, 13, 19, 0, 0, 0, 0, 0]
Wagner [23, 1, 7, 14, 5, 18, 0, 0, 0, 0, 0]
Tchaikovsky [20, 3, 8, 1, 9, 11, 15, 22, 19, 11, 25]

25



Example: Sorting Names

No changes are made in the first 2 iterations. Iteration 3 yields:

Original Name Encoded Name
Bach [2, 1, 3, 8, 0, 0, 0, 0, 0, 0, 0]
Mozart [13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
Chopin [3, 8, 15, 16, 9, 14, 0, 0, 0, 0, 0]
Liszt [12, 9, 19, 26, 20, 0, 0, 0, 0, 0, 0]
Schubert [19, 3, 8, 21, 2, 5, 18, 20, 0, 0, 0]
Haydn [8, 1, 25, 4, 14, 0, 0, 0, 0, 0, 0]
Brahms [2, 18, 1, 8, 13, 19, 0, 0, 0, 0, 0]
Wagner [23, 1, 7, 14, 5, 18, 0, 0, 0, 0, 0]
Beethoven [2, 5, 5, 20, 8, 15, 22, 5, 14, 0, 0]
Tchaikovsky [20, 3, 8, 1, 9, 11, 15, 22, 19, 11, 25]

26



Example: Sorting Names

Iteration 4

Original Name Encoded Name
Bach [2, 1, 3, 8, 0, 0, 0, 0, 0, 0, 0]
Mozart [13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
Chopin [3, 8, 15, 16, 9, 14, 0, 0, 0, 0, 0]
Liszt [12, 9, 19, 26, 20, 0, 0, 0, 0, 0, 0]
Haydn [8, 1, 25, 4, 14, 0, 0, 0, 0, 0, 0]
Brahms [2, 18, 1, 8, 13, 19, 0, 0, 0, 0, 0]
Wagner [23, 1, 7, 14, 5, 18, 0, 0, 0, 0, 0]
Schubert [19, 3, 8, 21, 2, 5, 18, 20, 0, 0, 0]
Beethoven [2, 5, 5, 20, 8, 15, 22, 5, 14, 0, 0]
Tchaikovsky [20, 3, 8, 1, 9, 11, 15, 22, 19, 11, 25]

27



Example: Sorting Names

Iteration 5

Original Name Encoded Name
Bach [2, 1, 3, 8, 0, 0, 0, 0, 0, 0, 0]
Liszt [12, 9, 19, 26, 20, 0, 0, 0, 0, 0, 0]
Haydn [8, 1, 25, 4, 14, 0, 0, 0, 0, 0, 0]
Schubert [19, 3, 8, 21, 2, 5, 18, 20, 0, 0, 0]
Tchaikovsky [20, 3, 8, 1, 9, 11, 15, 22, 19, 11, 25]
Chopin [3, 8, 15, 16, 9, 14, 0, 0, 0, 0, 0]
Beethoven [2, 5, 5, 20, 8, 15, 22, 5, 14, 0, 0]
Wagner [23, 1, 7, 14, 5, 18, 0, 0, 0, 0, 0]
Brahms [2, 18, 1, 8, 13, 19, 0, 0, 0, 0, 0]
Mozart [13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]

28



Example: Sorting Names

Iteration 6

Original Name Encoded Name
Bach [2, 1, 3, 8, 0, 0, 0, 0, 0, 0, 0]
Schubert [19, 3, 8, 21, 2, 5, 18, 20, 0, 0, 0]
Wagner [23, 1, 7, 14, 5, 18, 0, 0, 0, 0, 0]
Beethoven [2, 5, 5, 20, 8, 15, 22, 5, 14, 0, 0]
Tchaikovsky [20, 3, 8, 1, 9, 11, 15, 22, 19, 11, 25]
Chopin [3, 8, 15, 16, 9, 14, 0, 0, 0, 0, 0]
Brahms [2, 18, 1, 8, 13, 19, 0, 0, 0, 0, 0]
Haydn [8, 1, 25, 4, 14, 0, 0, 0, 0, 0, 0]
Mozart [13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
Liszt [12, 9, 19, 26, 20, 0, 0, 0, 0, 0, 0]

29

Alex

Alex



Example: Sorting Names

Iteration 7

Original Name Encoded Name
Tchaikovsky [20, 3, 8, 1, 9, 11, 15, 22, 19, 11, 25]
Mozart [13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
Haydn [8, 1, 25, 4, 14, 0, 0, 0, 0, 0, 0]
Bach [2, 1, 3, 8, 0, 0, 0, 0, 0, 0, 0]
Brahms [2, 18, 1, 8, 13, 19, 0, 0, 0, 0, 0]
Wagner [23, 1, 7, 14, 5, 18, 0, 0, 0, 0, 0]
Chopin [3, 8, 15, 16, 9, 14, 0, 0, 0, 0, 0]
Beethoven [2, 5, 5, 20, 8, 15, 22, 5, 14, 0, 0]
Schubert [19, 3, 8, 21, 2, 5, 18, 20, 0, 0, 0]
Liszt [12, 9, 19, 26, 20, 0, 0, 0, 0, 0, 0]

30

Alex



Example: Sorting Names

Iteration 8

Original Name Encoded Name
Brahms [2, 18, 1, 8, 13, 19, 0, 0, 0, 0, 0]
Bach [2, 1, 3, 8, 0, 0, 0, 0, 0, 0, 0]
Beethoven [2, 5, 5, 20, 8, 15, 22, 5, 14, 0, 0]
Wagner [23, 1, 7, 14, 5, 18, 0, 0, 0, 0, 0]
Tchaikovsky [20, 3, 8, 1, 9, 11, 15, 22, 19, 11, 25]
Schubert [19, 3, 8, 21, 2, 5, 18, 20, 0, 0, 0]
Chopin [3, 8, 15, 16, 9, 14, 0, 0, 0, 0, 0]
Liszt [12, 9, 19, 26, 20, 0, 0, 0, 0, 0, 0]
Haydn [8, 1, 25, 4, 14, 0, 0, 0, 0, 0, 0]
Mozart [13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]

31

Alex

Alex



Example: Sorting Names

Iteration 9

Original Name Encoded Name
Bach [2, 1, 3, 8, 0, 0, 0, 0, 0, 0, 0]
Haydn [8, 1, 25, 4, 14, 0, 0, 0, 0, 0, 0]
Wagner [23, 1, 7, 14, 5, 18, 0, 0, 0, 0, 0]
Tchaikovsky [20, 3, 8, 1, 9, 11, 15, 22, 19, 11, 25]
Schubert [19, 3, 8, 21, 2, 5, 18, 20, 0, 0, 0]
Beethoven [2, 5, 5, 20, 8, 15, 22, 5, 14, 0, 0]
Chopin [3, 8, 15, 16, 9, 14, 0, 0, 0, 0, 0]
Liszt [12, 9, 19, 26, 20, 0, 0, 0, 0, 0, 0]
Mozart [13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
Brahms [2, 18, 1, 8, 13, 19, 0, 0, 0, 0, 0]

32

Alex



Example: Sorting Names

Iteration 10

Original Name Encoded Name
Bach [2, 1, 3, 8, 0, 0, 0, 0, 0, 0, 0]
Beethoven [2, 5, 5, 20, 8, 15, 22, 5, 14, 0, 0]
Brahms [2, 18, 1, 8, 13, 19, 0, 0, 0, 0, 0]
Chopin [3, 8, 15, 16, 9, 14, 0, 0, 0, 0, 0]
Haydn [8, 1, 25, 4, 14, 0, 0, 0, 0, 0, 0]
Liszt [12, 9, 19, 26, 20, 0, 0, 0, 0, 0, 0]
Mozart [13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
Schubert [19, 3, 8, 21, 2, 5, 18, 20, 0, 0, 0]
Tchaikovsky [20, 3, 8, 1, 9, 11, 15, 22, 19, 11, 25]
Wagner [23, 1, 7, 14, 5, 18, 0, 0, 0, 0, 0]

33

Alex

Alex

Alex

Alex

Alex

Alex

Alex



Bucket Sort



Bucket Sort

As the name suggests, bucket sort distributes the input into a number of distinct
buckets based on the input value.

• The key here is the assumption that the data is uniformly distributed.

• If the data were not uniformly distributed, then more elements would be
concentrated.

• The uniformity ensures that a relatively equal number of data points are
placed in each bucket.

• This is also a convenient assumption to have for a parallelized
implementation.

34

Alex



Bucket Sort

• Bucket sort places values into a bucket based on their most significant digits.

• Once the values are assigned, then a simple sort such as insertion sort is
used to sort the values within each bucket.

• Once sorted, the buckets are concatenated together to produce the final
output.

35



Bucket Sort

Under the assumption of uniformity, each bucket will contain no more than 1/n of
the total elements.

This implies that each call to insertion_sort will take O(1) time.

36



Bucket Sort

An example of bucket sort sorting a list of floats. 37

Alex

Alex

Alex



Bucket Sort

def bucket_sort(A):
n = len(A)
B = [[] for i in range(n)]
for i in range(n):

B[int(n * A[i])].append(A[i])
for i in range(n):

insertion_sort(B[i])
return B

38

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex



Analysis

Initializing the array and placing each item into a bucket takes Θ(n) time.

The call to each insertion sort is O(n2).

The recurrence is given as

T(n) = Θ(n) +
n−1∑
i=0

O(n2
i ).

39

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex



Analysis

The key is to determine the expected value E[n2
i ].

We will frame the problem as a binomial distribution, where a success occurs
when an element goes into bucket i.

• p is the probability of success: p = 1
n .

• q is the probability of failure: q = 1− 1
n .

40

Alex

Alex

Alex

Alex

Alex

Alex



Analysis

Under a binomial distribution, we have that E[ni] = np = n(1/n) = 1 and
Var[ni] = npq = 1− 1/n, where p = 1/n and q = 1− 1/n.

The expected value is then

E[n2
i ] = Var[ni] + E[ni]2 = 1− 1/n+ 1 = 2− 1/n.

41

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex



Analysis

This gives way to the fact that

E[T(n)] = Θ(n) +
n−1∑
i=0

O(2− 1/n)

= Θ(n) + O(n)
= Θ(n).

42

Alex

Alex

Alex


	Introduction
	Establishing a Lower Bound on Comparison Sorts
	Counting Sort
	Radix Sort
	Bucket Sort

