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Introduction

All sorting algorithms discussed up to this point are comparison based.

It may be intuitive to think that sorting cannot be done without a comparison.

If you have no way to evaluate the relative ordering of two different objects, how
can you possibly arrange them in any order?
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Introduction

It turns out that comparison based sorts cannot possibly reach linear time.

Any comparison sort must make Ω(n lg n) comparisons in the worst case.
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Establishing a Lower Bound

The basis of the proof is to consider that all comparison sorts can be viewed as a
decision tree.

Each leaf represents a unique permutation of the input array.

If there are n elements in the input array, there are n! possible permutations.
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Establishing a Lower Bound

A decision tree for a comparison sort on a 3-element array.
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Establishing a Lower Bound

Interpreting the tree

• Each node compares two values as a : b.

• If a ≤ b, the left path is taken.

• The worst case of a comparison sort can be determined by the height of the
tree.
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Establishing a Lower Bound

Consider a binary tree of height h with l reachable leaves.

• Each of the n! permutations occurs as one of the leaves, so n! ≤ l since there
may be duplicate permutations in the leaves.

• A binary tree with height h has no more than 2h leaves, so n! ≤ l ≤ 2h.
• Taking the logarithm of this inequality implies that h ≥ lg n!.
• Since lg n! = Θ(n lg n), and is a lower bound on the height of the tree, then
any comparison sort must make Ω(n lg n) comparisons.
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Counting Sort

Counting sort can sort an array of integers in O(n+ k) time, where k ≥ 0 is the
largest integer in the set.

It works by counting the number of elements less than or equal to each element
x.
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Counting Sort

def counting_sort(A, k):
n = len(A)
B = [0 for i in range(n)]
C = [0 for i in range(k+1)]

for i in range(n):
C[A[i]] += 1

for i in range(1, k):
C[i] = C[i] + C[i-1]

for i in range(n - 1, -1, -1):
B[C[A[i]]-1] = A[i]
C[A[i]] = C[A[i]] - 1

return B
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Counting Sort

Walkthrough

• The first two loops establish the number of elements less than or equal to i
for each element i.

• The main sticking point in understanding this algorithm is the last loop.

• It starts at the very end of loop, placing the last element from A into the
output array B in its correct position as determined by C.
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Counting Sort

Example

A = {2, 5, 5, 3, 4}.

• After the second loop, C = {0, 0, 1, 2, 3, 5}.

• On the first iteration of the last loop, A[4] = 4 is used as the index into C,
which yields 3 since the value 4 is greater than or equal to 3 elements in the
original array.

• It is then placed in the correct spot B[3− 1] = 4.
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Counting Sort

Class Exercise: Sort the array A = {2, 5, 3, 0, 2, 3, 0, 3} using counting sort.

Do similar values maintain their relative order?
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Radix Sort

Dating back to 1887 by Herman Hollerith’s work on tabulating machines

• Places numbers in one of k bins based on their radix, or the number of
unique digits.

• It was used for sorting punch cards via multi-column sorting.

• It works by iteratively sorting a series of inputs based on a column starting
with the least-significant digit.
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Radix Sort

An example of radix sort sorting a list of integers.
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Radix Sort

def radix_sort(A, d):
for i in range(d):

A = counting_sort(A, len(A), 9)
return A
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Radix Sort

Analysis

• Counting sort is Θ(n+ k).

• Radix sort calls it d times.

• Therefore, the time complexity of radix sort is Θ(d(n+ k)).

• If k = O(n), then the time complexity is Θ(dn).
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Complex Keys

What if the data is not just a single integer, but a complex key or series of keys?

The keys themselves can be broken up into digits.
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Complex Keys

Consider a 32-bit word.

• To sort n of these words with b = 32 bits per word, break the words into r = 8
bit digits.

• This yields d = ⌈b/r⌉ = 4 digits.

• The largest value for each digit is then k = 2r − 1 = 255.

• Plugging these values into the analysis from above yields Θ((b/r)(n+ 2r)).
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Complex Keys

What is the best choice of r?

• As r increases, 2r increases.

• As it decreases, br increases.

• The best choice depends on whether b < ⌊lg n⌋.
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Complex Keys

If b < ⌊lg n⌋, then r ≤ b implies (n+ 2r) = Θ(n) since 2lg n = n.

If b ≥ ⌊lg n⌋, then we should choose r ≈ lg n.

This would yield Θ((b/ lg n)(n+ n)) = Θ(bn/ lg n).
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Complex Keys

Another perspective…

Choosing r < lg n implies b
r > b

lg n ; the n+ 2r term doesn’t increase.

Choosing r > lg n implies an increase in n+ 2r.
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Complex Keys

If we are given 216 32-bit words, we should use r = lg 216 = 16 bits.

This would result in ⌈ 3216⌉ = 2 passes.
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Comparison to Quicksort and Merge sort

Consider an input of 1 million (220) 32-bit integers.

• Radix sort: 2 passes, each with O(n) time.

• Quicksort:

lg n = 20 passes, each with O(n) time.

• Merge sort: lg n = 20 passes, each with O(n) time.
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Example: Sorting Names

Use radix sort to sort the following list of names: ”Beethoven”, ”Bach”, ”Mozart”,
”Chopin”, ”Liszt”, ”Schubert”, ”Haydn”, ”Brahms”, ”Wagner”, ”Tchaikovsky”.
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Example: Sorting Names

First, we need to figure out how to encode the names as integers.

• If we convert the input to lowercase, we only have to deal with k = 26 unique
characters.

• This only requires 5 bits.

• Since each name has varying length, we can use a sentinel value of 0 to pad
the shorter names.

• That is, 0 represents a padding character and the alphabet starts at 1.
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Example: Sorting Names

Original Name Encoded Name
Beethoven [2, 5, 5, 20, 8, 15, 22, 5, 14, 0, 0]
Bach [2, 1, 3, 8, 0, 0, 0, 0, 0, 0, 0]
Mozart [13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
Chopin [3, 8, 15, 16, 9, 14, 0, 0, 0, 0, 0]
Liszt [12, 9, 19, 26, 20, 0, 0, 0, 0, 0, 0]
Schubert [19, 3, 8, 21, 2, 5, 18, 20, 0, 0, 0]
Haydn [8, 1, 25, 4, 14, 0, 0, 0, 0, 0, 0]
Brahms [2, 18, 1, 8, 13, 19, 0, 0, 0, 0, 0]
Wagner [23, 1, 7, 14, 5, 18, 0, 0, 0, 0, 0]
Tchaikovsky [20, 3, 8, 1, 9, 11, 15, 22, 19, 11, 25]
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Example: Sorting Names

No changes are made in the first 2 iterations. Iteration 3 yields:

Original Name Encoded Name
Bach [2, 1, 3, 8, 0, 0, 0, 0, 0, 0, 0]
Mozart [13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
Chopin [3, 8, 15, 16, 9, 14, 0, 0, 0, 0, 0]
Liszt [12, 9, 19, 26, 20, 0, 0, 0, 0, 0, 0]
Schubert [19, 3, 8, 21, 2, 5, 18, 20, 0, 0, 0]
Haydn [8, 1, 25, 4, 14, 0, 0, 0, 0, 0, 0]
Brahms [2, 18, 1, 8, 13, 19, 0, 0, 0, 0, 0]
Wagner [23, 1, 7, 14, 5, 18, 0, 0, 0, 0, 0]
Beethoven [2, 5, 5, 20, 8, 15, 22, 5, 14, 0, 0]
Tchaikovsky [20, 3, 8, 1, 9, 11, 15, 22, 19, 11, 25]
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Example: Sorting Names

Iteration 4

Original Name Encoded Name
Bach [2, 1, 3, 8, 0, 0, 0, 0, 0, 0, 0]
Mozart [13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
Chopin [3, 8, 15, 16, 9, 14, 0, 0, 0, 0, 0]
Liszt [12, 9, 19, 26, 20, 0, 0, 0, 0, 0, 0]
Haydn [8, 1, 25, 4, 14, 0, 0, 0, 0, 0, 0]
Brahms [2, 18, 1, 8, 13, 19, 0, 0, 0, 0, 0]
Wagner [23, 1, 7, 14, 5, 18, 0, 0, 0, 0, 0]
Schubert [19, 3, 8, 21, 2, 5, 18, 20, 0, 0, 0]
Beethoven [2, 5, 5, 20, 8, 15, 22, 5, 14, 0, 0]
Tchaikovsky [20, 3, 8, 1, 9, 11, 15, 22, 19, 11, 25]
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Example: Sorting Names

Iteration 5

Original Name Encoded Name
Bach [2, 1, 3, 8, 0, 0, 0, 0, 0, 0, 0]
Liszt [12, 9, 19, 26, 20, 0, 0, 0, 0, 0, 0]
Haydn [8, 1, 25, 4, 14, 0, 0, 0, 0, 0, 0]
Schubert [19, 3, 8, 21, 2, 5, 18, 20, 0, 0, 0]
Tchaikovsky [20, 3, 8, 1, 9, 11, 15, 22, 19, 11, 25]
Chopin [3, 8, 15, 16, 9, 14, 0, 0, 0, 0, 0]
Beethoven [2, 5, 5, 20, 8, 15, 22, 5, 14, 0, 0]
Wagner [23, 1, 7, 14, 5, 18, 0, 0, 0, 0, 0]
Brahms [2, 18, 1, 8, 13, 19, 0, 0, 0, 0, 0]
Mozart [13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
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Example: Sorting Names

Iteration 6

Original Name Encoded Name
Bach [2, 1, 3, 8, 0, 0, 0, 0, 0, 0, 0]
Schubert [19, 3, 8, 21, 2, 5, 18, 20, 0, 0, 0]
Wagner [23, 1, 7, 14, 5, 18, 0, 0, 0, 0, 0]
Beethoven [2, 5, 5, 20, 8, 15, 22, 5, 14, 0, 0]
Tchaikovsky [20, 3, 8, 1, 9, 11, 15, 22, 19, 11, 25]
Chopin [3, 8, 15, 16, 9, 14, 0, 0, 0, 0, 0]
Brahms [2, 18, 1, 8, 13, 19, 0, 0, 0, 0, 0]
Haydn [8, 1, 25, 4, 14, 0, 0, 0, 0, 0, 0]
Mozart [13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
Liszt [12, 9, 19, 26, 20, 0, 0, 0, 0, 0, 0]
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Example: Sorting Names

Iteration 7

Original Name Encoded Name
Tchaikovsky [20, 3, 8, 1, 9, 11, 15, 22, 19, 11, 25]
Mozart [13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
Haydn [8, 1, 25, 4, 14, 0, 0, 0, 0, 0, 0]
Bach [2, 1, 3, 8, 0, 0, 0, 0, 0, 0, 0]
Brahms [2, 18, 1, 8, 13, 19, 0, 0, 0, 0, 0]
Wagner [23, 1, 7, 14, 5, 18, 0, 0, 0, 0, 0]
Chopin [3, 8, 15, 16, 9, 14, 0, 0, 0, 0, 0]
Beethoven [2, 5, 5, 20, 8, 15, 22, 5, 14, 0, 0]
Schubert [19, 3, 8, 21, 2, 5, 18, 20, 0, 0, 0]
Liszt [12, 9, 19, 26, 20, 0, 0, 0, 0, 0, 0]
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Example: Sorting Names

Iteration 8

Original Name Encoded Name
Brahms [2, 18, 1, 8, 13, 19, 0, 0, 0, 0, 0]
Bach [2, 1, 3, 8, 0, 0, 0, 0, 0, 0, 0]
Beethoven [2, 5, 5, 20, 8, 15, 22, 5, 14, 0, 0]
Wagner [23, 1, 7, 14, 5, 18, 0, 0, 0, 0, 0]
Tchaikovsky [20, 3, 8, 1, 9, 11, 15, 22, 19, 11, 25]
Schubert [19, 3, 8, 21, 2, 5, 18, 20, 0, 0, 0]
Chopin [3, 8, 15, 16, 9, 14, 0, 0, 0, 0, 0]
Liszt [12, 9, 19, 26, 20, 0, 0, 0, 0, 0, 0]
Haydn [8, 1, 25, 4, 14, 0, 0, 0, 0, 0, 0]
Mozart [13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
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Example: Sorting Names

Iteration 9

Original Name Encoded Name
Bach [2, 1, 3, 8, 0, 0, 0, 0, 0, 0, 0]
Haydn [8, 1, 25, 4, 14, 0, 0, 0, 0, 0, 0]
Wagner [23, 1, 7, 14, 5, 18, 0, 0, 0, 0, 0]
Tchaikovsky [20, 3, 8, 1, 9, 11, 15, 22, 19, 11, 25]
Schubert [19, 3, 8, 21, 2, 5, 18, 20, 0, 0, 0]
Beethoven [2, 5, 5, 20, 8, 15, 22, 5, 14, 0, 0]
Chopin [3, 8, 15, 16, 9, 14, 0, 0, 0, 0, 0]
Liszt [12, 9, 19, 26, 20, 0, 0, 0, 0, 0, 0]
Mozart [13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
Brahms [2, 18, 1, 8, 13, 19, 0, 0, 0, 0, 0]
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Example: Sorting Names

Iteration 10

Original Name Encoded Name
Bach [2, 1, 3, 8, 0, 0, 0, 0, 0, 0, 0]
Beethoven [2, 5, 5, 20, 8, 15, 22, 5, 14, 0, 0]
Brahms [2, 18, 1, 8, 13, 19, 0, 0, 0, 0, 0]
Chopin [3, 8, 15, 16, 9, 14, 0, 0, 0, 0, 0]
Haydn [8, 1, 25, 4, 14, 0, 0, 0, 0, 0, 0]
Liszt [12, 9, 19, 26, 20, 0, 0, 0, 0, 0, 0]
Mozart [13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
Schubert [19, 3, 8, 21, 2, 5, 18, 20, 0, 0, 0]
Tchaikovsky [20, 3, 8, 1, 9, 11, 15, 22, 19, 11, 25]
Wagner [23, 1, 7, 14, 5, 18, 0, 0, 0, 0, 0]
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Bucket Sort



Bucket Sort

As the name suggests, bucket sort distributes the input into a number of distinct
buckets based on the input value.

• The key here is the assumption that the data is uniformly distributed.

• If the data were not uniformly distributed, then more elements would be
concentrated.

• The uniformity ensures that a relatively equal number of data points are
placed in each bucket.

• This is also a convenient assumption to have for a parallelized
implementation.
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Bucket Sort

• Bucket sort places values into a bucket based on their most significant digits.

• Once the values are assigned, then a simple sort such as insertion sort is
used to sort the values within each bucket.

• Once sorted, the buckets are concatenated together to produce the final
output.
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Bucket Sort

Under the assumption of uniformity, each bucket will contain no more than 1/n of
the total elements.

This implies that each call to insertion_sort will take O(1) time.
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Bucket Sort

An example of bucket sort sorting a list of floats. 37

Alex

Alex

Alex



Bucket Sort

def bucket_sort(A):
n = len(A)
B = [[] for i in range(n)]
for i in range(n):

B[int(n * A[i])].append(A[i])
for i in range(n):

insertion_sort(B[i])
return B
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Analysis

Initializing the array and placing each item into a bucket takes Θ(n) time.

The call to each insertion sort is O(n2).

The recurrence is given as

T(n) = Θ(n) +
n−1∑
i=0

O(n2
i ).
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Analysis

The key is to determine the expected value E[n2
i ].

We will frame the problem as a binomial distribution, where a success occurs
when an element goes into bucket i.

• p is the probability of success: p = 1
n .

• q is the probability of failure: q = 1− 1
n .
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Analysis

Under a binomial distribution, we have that E[ni] = np = n(1/n) = 1 and
Var[ni] = npq = 1− 1/n, where p = 1/n and q = 1− 1/n.

The expected value is then

E[n2
i ] = Var[ni] + E[ni]2 = 1− 1/n+ 1 = 2− 1/n.
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Analysis

This gives way to the fact that

E[T(n)] = Θ(n) +
n−1∑
i=0

O(2− 1/n)

= Θ(n) + O(n)
= Θ(n).
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