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Introduction

All sorting algorithms discussed up to this point arelcomparison based.)

It may be intuitive to think that sorting cannot be done without a comparison.

If you have no way to evaluate the relative ordering of two different objects, how
can you possibly arrange them in any order?
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Introduction

It turns out that comparison based sorts cannot possibly reach linear time.

Any comparison sort must makecomparisons in the worst case.
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Establishing a Lower Bound on
Comparison Sorts



Establishing a Lower Bound

The basis of the proof is to consider that all comparison sorts can be viewed as a
decision tree.

Each leaf represents a unique permutation of the input array.

If there are n elements in the input array, there are n! possible permutations.



Establishing a Lower Bound

A decision tree for a comparison sort on a 3-element array.
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Establishing a Lower Bound

Interpreting the tree

- Each node compares two values as a : b.
- If a < b, the left path is taken.

- The worst case of a comparison sort can be determined by the height of the
tree.



Establishing a Lower Bound

Consider a binary tree of height h with [ reachable leaves.

- Each of the n! permutations occurs as one of the leaves, so [ since there
may be duplicate permutations in the leaves.
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Establishing a Lower Bound

Consider a binary tree of height h with [ reachable leaves.

- Each of the n! permutations occurs as one of the leaves, so n! < [ since there
may be duplicate permutations in the leaves.

Y
- A binary tree with heightﬂ has no more than@eaves, so_n_!g [ g@
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Establishing a Lower Bound

Consider a binary tree of height h with [ reachable leaves.

- Each of the n! permutations occurs as one of the leaves, so n! < [ since there
may be duplicate permutations in the leaves. |
- A binary tree with height h has no more than 2" leaves, so%' <[ <2

- Taking the logarithm of this inequality implies tha
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Establishing a Lower Bound

Consider a binary tree of height h with [ reachable leaves.

- Each of the n! permutations occurs as one of the leaves, so n! < [ since there
may be duplicate permutations in the leaves.

- A binary tree with height h has no more than 2" leaves, so n! < [ < 2.

- Taking the logarithm of this inequality implies that h > Ign!.

- Since lgn! = o(n lgn), and is a lower bound on the height of the tree, then
any comparison sort must make Q(nlgn) comparisons.
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Counting Sort
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Counting sort can sort an array of integers in O(p_+@time, where kR > 0 is the
largest integer in the set.

It works by counting the number of elements less than or equal to each element

X. O"So
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Counting Sort

def counting_sort(A, k): Zl, 5 ) ’31' O|; 2,2, /52/ OL‘ ’S?
n = len(A)

= or i in range(n _ t) . lL 5. 3 3 §
2= EZ :or i in ranieikii)] %‘ l,o\| 1,‘2 | ) /21! 5’ )
Cfllxzn"\n 0, 1.%)

for i in range(n):
CLA[i]] += 1

-

for i in range(1, k): = S

l -
C[i] = Cc[il + c[i-1] A\/gx - 3"
. . : v
for i in range(n - 1, -1, -1):
B[C[A[i]]-1] = A[i] Life\

CA[i]] = C[A[i]] - 1 (;\ §x

return B
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Counting Sort

Walkthrough

- The first two loops establish the number of elements less than or equal to i
for each element .

- The main sticking point in understanding this algorithm is the last loop.

- It starts at the very end of loop, placing the last element from A into the
output array B in its correct position as determined by C.



Counting Sort

Example

A={2,55,3,4}.

- After the second loop, C ={0,0,1,2,3,5}.

10



Counting Sort

Example

A=1{2,5,5,3,4}.

- After the second loop, C ={0,0,1,2,3,5}.

- On the first iteration of the last loop, A[4] = & is used as the index into C,

which yields 3 since the value 4 is greater than or equal to 3 elements in the
original array.

- Itis then placed in the correct spot B[3 — 1] = 4.
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Counting Sort

Class Exercise: Sort the array A = {2,5,3,0,2,3.0,3} using counting sort.

Do similar values maintain their relative order?

N’S =7 5\“\0""’

1
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Radix Sort
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Radix Sort

Dating back to 1887 by Herman Hollerith’s work on tabulating machines

- Places numbers in one of k bins based on their radix, or the number of
unique digits.

- It was used for sorting punch cards via multi-column sorting.

- It works by iteratively sorting a series of inputs based on a column starting
with the least-significant digit.
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https://en.wikipedia.org/wiki/Tabulating_machine

Radix Sort

329 720 720 329
457 355 329 355
657 436 436 436
839 —> 457 —> 839 ——> 457
436 657 355 657
720 329 457 720
355 839 657 839

An example of radix sort sorting a list of integers.

C\B(m\—\‘)

13
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Radix Sort

7

N

def radix_sort(A, d):
for i in range(d):
A = counting_sort(A, len(A), 9)

return A
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Radix Sort

Analysis

- Counting sort is ©(n + R).
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Radix Sort

Analysis
- Counting sort is ©(n + R).

- Radix sort calls it d times.
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Radix Sort

Analysis
- Counting sort is ©(n + R).

- Radix sort calls it d times.

- Therefore, the time complexity of radix sort ig ©(d(n + R)).

15


Alex


Radix Sort

Analysis
- Counting sort is ©(n + R).
- Radix sort calls it d times.

nn
- Therefore, the time complexity of radix sort is ©(d(n + R)).

- Ifk : then the time complexity i@

15
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Complex Keys

i

What if the data is not just a single integer, but a complex key or series of keys?


Alex

Alex

Alex


Complex Keys

What if the data is not just a single integer, but a complex key or series of keys?

The keys themselves can be broken up intoldigits. >
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6( ;

Consider a 32-bit word.

— k<
- To sort n of these words with b = 32 bits per word, break the words into r = 8
bit digits.

- Thisyields d = [b/r] = 4 digits.
- The largest value for each digit is then kR = 2" —1 :

- Plugging these values into the analysis from above yield

@((r)(n +2)).
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Complex Keys

What is the best choice of@
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Complex Keys

What is the best choice of r?

- Asr increases,@ncreases.

b

- As it decreases, 7 increases.

- The best choice depends on whether b < |Ign].
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Complex Keys

=21 =%

Ifb < |lgn], thenj;/g b implie O(n) since 2';{“ =

If b > |lgn], then we should choose r = Ign.

This would yield ©((b/1gn)(n + n)) (©(bn/Ign
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Complex Keys

Another perspective...

Choosing r < lgn impliesthe n + 2" term doesn't increase.
——

Choosing r > Ign implies an increase inf:@
——

20
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Complex Keys

If we are given 2'® 32-bit words, we should use r = Ig2'® = 16 bits.

7
This would result i

21
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Comparison to Quicksort and Merge sort

Consider an input of 1 million (22°) 32-bit integers.

- Radix sort: 2 passes, each with O(n) time.

- Quicksort:
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Comparison to Quicksort and Merge sort

Consider an input of 1 million (22°) 32-bit integers.

- Radix sort: 2 passes, each with O(n) time.
- Quicksort: Ign = 20 passes, each with O(n) time.

- Merge sort:
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Comparison to Quicksort and Merge sort

Consider an input of 1 million (22°) 32-bit integers.

- Radix sort: 2 passes, each with O(n) time.
Gl AL

- Quicksort: Ign = 20 passes, each with O(n) time.
— —

- Merge sort: Ign = 20 passes, each with O(n) time.
’ o
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Example: Sorting Names
a3 =%

non non

Use radix sort to sort the following list of names: "Beethoven”, "Bach”, "Mozart”,

non

"Chopin”, "Liszt”, "Schubert”, "Haydn”, "Brahms”, "Wagner”, "Tchaikovsky".

23
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Example: Sorting Names

First, we need to figure out how to encode the names as integers.

- If we convert the input to lowercase, we only have to deal with k = 26 unique

characters. 2559’2,
- This only requires 5 bits.

- Since each name has varying length, we can use a sentinel value of 0 to pad
the shorter names.

- That is, 0 represents a padding character and the alphabet starts at 1.

24
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Example: Sorting Names

Original Name | Encoded Name

Beethoven [2,5,5, 20, 8,15,22,5, 14, 0, 0]
Bach [2,1,3,8,0,0,0,0,0,0, 0]
Mozart [13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
Chopin (3, 8,15, 16,9, 14,0, 0, 0, 0, 0]
Liszt [12, 9, 19, 26, 20,0, 0, 0, 0, 0, O]
Schubert [19, 3, 8, 21, 2, 5, 18, 20, 0, 0, 0]
Haydn [8, 1,25, 4,14,0,0,0,0,0, 0]
Brahms [2,18, 1,8, 13,19,0,0,0,0,0]
Wagner [23,1,7,14,5,18,0,0,0,0, 0]
Tchaikovsky [20, 3,8, 1,9, 11, 15, 22, 19, 11, 25]

25



Example: Sorting Names

No changes are made in the first 2 iterations. Iteration 3 yields:

Original Name | Encoded Name

Bach 2,1,3,8,0,0,0,0,0,0, 0]
Mozart 13, 15, 26, 1, 18, 20,0, 0, 0, 0, O]
Chopin 3,8,15,16,9, 14,0, 0,0, 0, 0]
Liszt 12,9, 19, 26, 20,0, 0, 0, 0, 0, 0]

Haydn 8, 1,25 4 14,0,0,0,0,0, 0]
Brahms 2,18, 1,8, 13,19,0,0,0,0, 0]
Wagner 23,1,7,14,5,18,0,0,0, 0, 0]
Beethoven 2,5,5,20,8,15,22,5, 14,0, 0]

[
[
[
[
Schubert [19,3,8,21,2,5,18,20,0,0,0]
[
[
[
[
[

Tchaikovsky 20, 3,8,1,9,11, 15, 22, 19, 11, 25]
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Example: Sorting Names

Iteration &

Original Name | Encoded Name

Bach 2,1,3,8,0,0,0,0,0,0, 0]
Mozart 13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
Chopin 3,8,15,16,9, 14,0, 0,0, 0, 0]
Liszt 12,9, 19, 26, 20,0, 0, 0, 0, 0, 0]
Haydn 8,1,25,4 14,0,0,0,0,0, 0]

Wagner 23,1,7,14,5,18,0,0,0, 0, 0]
Schubert 19,3, 8,21, 2,5,18,20,0,0,0]
Beethoven 2,5,5,20,8,15,22,5, 14,0, 0]

[
[
[
[
[
Brahms [2,18,1,8,13,19,0,0,0,0, 0]
[
[
[
[

Tchaikovsky 20,3,8,1,9,11, 15, 22, 19, 11, 25]
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Example: Sorting Names

Iteration 5

Original Name

Encoded Name

Bach

Liszt

Haydn
Schubert
Tchaikovsky
Chopin
Beethoven
Wagner
Brahms
Mozart

[2,1,3,8,0,0,0,0,0,0,0]

[12, 9, 19, 26, 20, 0,0, 0, 0, 0, 0]

[8, 1,25, 4, 14,0, 0, 0, 0, 0, 0]

[19, 3, 8,21, 2, 5, 18, 20, 0, 0, 0]
[20, 3,8, 1,9, 11, 15, 22, 19, 11, 25]
[3,8,15,16,9, 14,0, 0, 0, 0, 0]
[2,5,5, 20,8, 15,22, 5,14, 0, 0]
[23,1,7,14,5,18,0,0,0,0,0]
[2,18,1,8,13,19,0,0,0,0,0]

[13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]

28



Example: Sorting Names

Iteration 6

Original Name

Encoded Name

Bach
Schubert
Wagner
Beethoven
Tchaikovsky
Chopin
Brahms
Haydn
Mozart

Liszt

2,1,3,8,0,0,0,0,0,0, 0]
19,3,8,21,2,5,18,20,0,0,0]
23,1,7,14,5,18,0,0,0,0, 0]
2,5,5,20,8,15,22,5, 14,0, 0]
20,3,8,1,9, 11, 15,22, 19, 11, 25]
3,8,15,16,9, 14,0,0,0,0, 0]
2,18,1,8,13,19,0,0,0,0, 0]
81,25, 4 14,0,0,0,0,0, 0]

13, 15,26, 1, 18, 20, 0,0, 0, 0, 0]

[
[
[
[
[
[
[
[
[
[12,9, 19,26, 20,0,0,0,0, 0, 0]

29
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Example: Sorting Names

Iteration 7
Original Name | Encoded Name
Tchaikovsky [20, 3,8,1,9,11, 15, 22, 19, 11, 25]
Mozart [13, 15, 26, 1,18,20,0,0,0,0, 0]
Haydn [8,1,25,4,14,0,0,0,0,0,0]
Bach (2,1, 3,80,0000,0, 0]
Brahms [2, 18, 1, 8,13, 48, 1, 0, ©, @, 0]
Wagner (23,1, 7, 14,5,18,0,0,0,0, 0]
Chopin [3,8,15,16,9,14,0,0,0,0, 0]
Beethoven [2,5,5, 20,8,15,22,5,14,0, 0]
Schubert [19, 3, 8, 21,2,5,18,20,0,0, 0]
Liszt [12,9, 19, 26,20,0,0,0,0, 0, 0]

30
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Example: Sorting Names

Iteration 8

Original Name

Encoded Name

Brahms
Bach
Beethoven
Wagner
Tchaikovsky
Schubert
Chopin
Liszt

Haydn
Mozart

2,18,1,8,13,19,0,0,0,0,0]
2,1, 3 8,0,0,0,0,0,0,0]

5,20, 8, 15, 22, 5, 14, 0, 0]
23 1 7,14,5,18,0,0,0,0,0]
20,3,8,1,9,11, 15,22, 19, 11, 25]
19, 3, 8 21,2,5,18,20,0,0,0]
3,8,15,16,9,14,0,0,0,0, 0]
12,9, 19, 26, 20,0, 0, 0, 0, 0, O]
8,1,25, 4 14,0,0,0,0,0, 0]

[
[
[2,
[
[
[
[
[
[
[13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
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Example: Sorting Names

Iteration 9

Original Name

Encoded Name

Bach
Haydn
Wagner
Tchaikovsky
Schubert
Beethoven
Chopin
Liszt
Mozart
Brahms

[2,1,3,8,0,0,0,0,0,0,0]
[8,1,25,4,14,0,0,0,0,0, 0]
[23,1,7,14,5,18,0,0,0,0, 0]
[20,3,8, 1,9, 11, 15, 22, 19, 11, 25]
[19,3,8,21,2,5,18,20,0,0,0]
[2, 5,5, 20,8,15,22,5, 14,0, 0]
[3,8,15,16,9,14,0,0,0,0,0]
[12, 9,19, 26, 20,0,0,0,0,0,0]
[13, 15, 26, 1, 18, 20, 0, 0, 0, 0, O]
[2,18,1,8,13,19,0,0,0,0, 0]
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Example: Sorting Names

[teration 10

Original Name

Encoded Name

Bach
Beethoven
Brahms
Chopin
Haydn

Liszt
Mozart
Schubert
Tchaikovsky
Wagner

2,1,3,80000,0,0,0]
2,5,5,20,8,15,22,5, 14,0, 0]
2,18,1,8,13,19,0,0,0,0, 0]
3,8,15,16,9, 14,0, 0,0, 0, 0]
8,1,25,4,14,0,0,0,0,0, 0]

12,9, 19, 26, 20,0, 0, 0, 0, 0, 0]
13, 15, 26, 1, 18, 20,0, 0, 0, 0, O]
19,3, 8,21, 2,5,18,20,0,0,0]
20, 3,8,1,9,11, 15, 22, 19, 11, 25]

[
[
[
[
[
[
[
[
[
[23,1,7,14,5,18,0,0,0,0,0]

e('\l‘\ (mﬂb\\

20
n=1
Vo
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Bucket Sort




Bucket Sort

As the name suggests, bucket sort distributes the input into a number of distinct
buckets based on the input value.

- The key here is the assumption that the data is uniformly distributed.

- If the data were not uniformly distributed, then more elements would be
concentrated.

- The uniformity ensures that a relatively equal number of data points are
placed in each bucket.

- This is also a convenient assumption to have for a parallelized
implementation.

34
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Bucket Sort

- Bucket sort places values into a bucket based on their most significant digits.

- Once the values are assigned, then a simple sort such as insertion sort is
used to sort the values within each bucket.

- Once sorted, the buckets are concatenated together to produce the final
output.

35



Bucket Sort

Under the assumption of uniformity, each bucket will contain no more than 1/n of
the total elements.

This implies that each call to insertion_sort will take O(1) time.

36



Bucket Sort

A B
1 [ 78] ol/]
2 .17 1| 412 F={177]
3139 2| 21 ] >3] ] >[26[/]
4 |.26] 3|
s 72 4|/
6 .94 5|/
7 | 21| 6 i—)
8 [.12] 7 | =72 578/
o 23] 5|/
10| 68| 9o | +—=>J0a]/]
(a) (b)

An example of bucket sort sorting a list of floats. ¥
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Bucket Sort

[T, 26,0, 1,25

gtol",ra , 1

def bucket _sort(A): 2\, N \ 13

len(A)
[[] for i in range(n)]

n
5 2

for i in range(n):
Blint(n * A[i])].append(A[i f‘L

for i in range(n):

insertion_sort(B[il)

return B
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Initializing the array and placing each item into a bucket takes ©(n) time.
The call to each insertion sort is O(n?).

i \s
L do
The recurrence is given as | ek V.
A7

-0 39
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The key is to determine the expected value E[n?].

We will frame the problem as a binomial distribution, where a success occurs
when an element goes into bucket /. f

- pis the probability of success: p = %‘/(\ V>
- g is the probability of failure: g =1— 1.

40
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Under a binomial distribution, we have that E[n;] = np = n(1/n) =1 and
Var[n]_npq_1—1/n wherep=1/nandg=1-1/n.

T

The expected value is then

{ (
E[n?] = Var[n] + E[n]* =1-1/n+1
4

e ——
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This gives way to the fact that
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