Sorting in Linear Time
CSE 5311: Design and Analysis of Algorithms

Alex Dillhoff

The University of Texas at Arlington

Introduction

Establishing a Lower Bound on Comparison Sorts

Counting Sort

Radix Sort

——————

Bucket Sort

Alex

Introduction

Introduction

All sorting algorithms discussed up to this point arelcomparison based.)

It may be intuitive to think that sorting cannot be done without a comparison.

If you have no way to evaluate the relative ordering of two different objects, how
can you possibly arrange them in any order?

Alex

Introduction

It turns out that comparison based sorts cannot possibly reach linear time.

Any comparison sort must makecomparisons in the worst case.

Alex

Establishing a Lower Bound on
Comparison Sorts

Establishing a Lower Bound

The basis of the proof is to consider that all comparison sorts can be viewed as a
decision tree.

Each leaf represents a unique permutation of the input array.

If there are n elements in the input array, there are n! possible permutations.

Establishing a Lower Bound

A decision tree for a comparison sort on a 3-element array.

Alex

Alex

Establishing a Lower Bound

Interpreting the tree

- Each node compares two values as a : b.
- If a < b, the left path is taken.

- The worst case of a comparison sort can be determined by the height of the
tree.

Establishing a Lower Bound

Consider a binary tree of height h with [reachable leaves.

- Each of the n! permutations occurs as one of the leaves, so [since there
may be duplicate permutations in the leaves.

Alex

Alex

Alex

Establishing a Lower Bound

Consider a binary tree of height h with [reachable leaves.

- Each of the n! permutations occurs as one of the leaves, so n! < [since there
may be duplicate permutations in the leaves.

Y
- A binary tree with heightﬂ has no more than@eaves, so_n_!g [g@

Alex

Alex

Alex

Alex

Establishing a Lower Bound

Consider a binary tree of height h with [reachable leaves.

- Each of the n! permutations occurs as one of the leaves, so n! < [since there
may be duplicate permutations in the leaves. |
- A binary tree with height h has no more than 2" leaves, so%' <[<2

- Taking the logarithm of this inequality implies tha

Alex

Alex

Establishing a Lower Bound

Consider a binary tree of height h with [reachable leaves.

- Each of the n! permutations occurs as one of the leaves, so n! < [since there
may be duplicate permutations in the leaves.

- A binary tree with height h has no more than 2" leaves, so n! < [< 2.

- Taking the logarithm of this inequality implies that h > Ign!.

- Since lgn! = o(n lgn), and is a lower bound on the height of the tree, then
any comparison sort must make Q(nlgn) comparisons.

Alex

Counting Sort

Alex

Counting sort can sort an array of integers in O(p_+@time, where kR > 0 is the
largest integer in the set.

It works by counting the number of elements less than or equal to each element

X. O"So

Alex

Alex

Alex

Alex

Alex

Alex

Counting Sort

def counting_sort(A, k): Zl, 5) ’31' O|; 2,2, /52/ OL‘ ’S?
n = len(A)

= or i in range(n _ t) . lL 5. 3 3 §
2= EZ :or i in ranieikii)] %‘ l,o\| 1,‘2 |) /21! 5’)
Cfllxzn"\n 0, 1.%)

for i in range(n):
CLA[i]] += 1

-

for i in range(1, k): = S

l -
C[i] = Cc[il + c[i-1] A\/gx - 3"
. . : v
for i in range(n - 1, -1, -1):
B[C[A[i]]-1] = A[i] Life\

CA[i]] = C[A[i]] - 1 (;\ §x

return B

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Counting Sort

Walkthrough

- The first two loops establish the number of elements less than or equal to i
for each element .

- The main sticking point in understanding this algorithm is the last loop.

- It starts at the very end of loop, placing the last element from A into the
output array B in its correct position as determined by C.

Counting Sort

Example

A={2,55,3,4}.

- After the second loop, C ={0,0,1,2,3,5}.

10

Counting Sort

Example

A=1{2,5,5,3,4}.

- After the second loop, C ={0,0,1,2,3,5}.

- On the first iteration of the last loop, A[4] = & is used as the index into C,

which yields 3 since the value 4 is greater than or equal to 3 elements in the
original array.

- Itis then placed in the correct spot B[3 — 1] = 4.

10

Counting Sort

Class Exercise: Sort the array A = {2,5,3,0,2,3.0,3} using counting sort.

Do similar values maintain their relative order?

N’S =7 5\“\0""’

1

Alex

Alex

Radix Sort

Alex

Radix Sort

Dating back to 1887 by Herman Hollerith’s work on tabulating machines

- Places numbers in one of k bins based on their radix, or the number of
unique digits.

- It was used for sorting punch cards via multi-column sorting.

- It works by iteratively sorting a series of inputs based on a column starting
with the least-significant digit.

12

https://en.wikipedia.org/wiki/Tabulating_machine

Radix Sort

329 720 720 329
457 355 329 355
657 436 436 436
839 —> 457 —> 839 ——> 457
436 657 355 657
720 329 457 720
355 839 657 839

An example of radix sort sorting a list of integers.

C\B(m\—\‘)

13

Alex

Alex

Alex

Radix Sort

7

N

def radix_sort(A, d):
for i in range(d):
A = counting_sort(A, len(A), 9)

return A

Alex

Alex

Radix Sort

Analysis

- Counting sort is ©(n + R).

15

Radix Sort

Analysis
- Counting sort is ©(n + R).

- Radix sort calls it d times.

15

Radix Sort

Analysis
- Counting sort is ©(n + R).

- Radix sort calls it d times.

- Therefore, the time complexity of radix sort ig ©(d(n + R)).

15

Alex

Radix Sort

Analysis
- Counting sort is ©(n + R).
- Radix sort calls it d times.

nn
- Therefore, the time complexity of radix sort is ©(d(n + R)).

- Ifk : then the time complexity i@

15

Alex

Alex

Alex

Complex Keys

i

What if the data is not just a single integer, but a complex key or series of keys?

Alex

Alex

Alex

Complex Keys

What if the data is not just a single integer, but a complex key or series of keys?

The keys themselves can be broken up intoldigits. >

Alex

Alex

d(;/\ \—\L))
6(;

Consider a 32-bit word.

— k<
- To sort n of these words with b = 32 bits per word, break the words into r = 8
bit digits.

- Thisyields d = [b/r] = 4 digits.
- The largest value for each digit is then kR = 2" —1 :

- Plugging these values into the analysis from above yield

@((r)(n +2)).

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Complex Keys

What is the best choice of@

Alex

Complex Keys

What is the best choice of r?

- Asr increases,@ncreases.

b

- As it decreases, 7 increases.

- The best choice depends on whether b < |Ign].

Alex

Alex

Complex Keys

=21 =%

Ifb < |lgn], thenj;/g b implie O(n) since 2';{“ =

If b > |lgn], then we should choose r = Ign.

This would yield ©((b/1gn)(n + n)) (©(bn/Ign

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Complex Keys

Another perspective...

Choosing r < lgn impliesthe n + 2" term doesn't increase.
——

Choosing r > Ign implies an increase inf:@
——

20

Alex

Alex

Alex

Complex Keys

If we are given 2'® 32-bit words, we should use r = Ig2'® = 16 bits.

7
This would result i

21

Alex

Alex

Alex

Comparison to Quicksort and Merge sort

Consider an input of 1 million (22°) 32-bit integers.

- Radix sort: 2 passes, each with O(n) time.

- Quicksort:

22

Alex

Comparison to Quicksort and Merge sort

Consider an input of 1 million (22°) 32-bit integers.

- Radix sort: 2 passes, each with O(n) time.
- Quicksort: Ign = 20 passes, each with O(n) time.

- Merge sort:

22

Comparison to Quicksort and Merge sort

Consider an input of 1 million (22°) 32-bit integers.

- Radix sort: 2 passes, each with O(n) time.
Gl AL

- Quicksort: Ign = 20 passes, each with O(n) time.
— —

- Merge sort: Ign = 20 passes, each with O(n) time.
’ o

22

Alex

Alex

Alex

Example: Sorting Names
a3 =%

non non

Use radix sort to sort the following list of names: "Beethoven”, "Bach”, "Mozart”,

non

"Chopin”, "Liszt”, "Schubert”, "Haydn”, "Brahms”, "Wagner”, "Tchaikovsky".

23

Alex

Example: Sorting Names

First, we need to figure out how to encode the names as integers.

- If we convert the input to lowercase, we only have to deal with k = 26 unique

characters. 2559’2,
- This only requires 5 bits.

- Since each name has varying length, we can use a sentinel value of 0 to pad
the shorter names.

- That is, 0 represents a padding character and the alphabet starts at 1.

24

Alex

Alex

Example: Sorting Names

Original Name | Encoded Name

Beethoven [2,5,5, 20, 8,15,22,5, 14, 0, 0]
Bach [2,1,3,8,0,0,0,0,0,0, 0]
Mozart [13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
Chopin (3, 8,15, 16,9, 14,0, 0, 0, 0, 0]
Liszt [12, 9, 19, 26, 20,0, 0, 0, 0, 0, O]
Schubert [19, 3, 8, 21, 2, 5, 18, 20, 0, 0, 0]
Haydn [8, 1,25, 4,14,0,0,0,0,0, 0]
Brahms [2,18, 1,8, 13,19,0,0,0,0,0]
Wagner [23,1,7,14,5,18,0,0,0,0, 0]
Tchaikovsky [20, 3,8, 1,9, 11, 15, 22, 19, 11, 25]

25

Example: Sorting Names

No changes are made in the first 2 iterations. Iteration 3 yields:

Original Name | Encoded Name

Bach 2,1,3,8,0,0,0,0,0,0, 0]
Mozart 13, 15, 26, 1, 18, 20,0, 0, 0, 0, O]
Chopin 3,8,15,16,9, 14,0, 0,0, 0, 0]
Liszt 12,9, 19, 26, 20,0, 0, 0, 0, 0, 0]

Haydn 8, 1,25 4 14,0,0,0,0,0, 0]
Brahms 2,18, 1,8, 13,19,0,0,0,0, 0]
Wagner 23,1,7,14,5,18,0,0,0, 0, 0]
Beethoven 2,5,5,20,8,15,22,5, 14,0, 0]

[
[
[
[
Schubert [19,3,8,21,2,5,18,20,0,0,0]
[
[
[
[
[

Tchaikovsky 20, 3,8,1,9,11, 15, 22, 19, 11, 25]

26

Example: Sorting Names

Iteration &

Original Name | Encoded Name

Bach 2,1,3,8,0,0,0,0,0,0, 0]
Mozart 13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]
Chopin 3,8,15,16,9, 14,0, 0,0, 0, 0]
Liszt 12,9, 19, 26, 20,0, 0, 0, 0, 0, 0]
Haydn 8,1,25,4 14,0,0,0,0,0, 0]

Wagner 23,1,7,14,5,18,0,0,0, 0, 0]
Schubert 19,3, 8,21, 2,5,18,20,0,0,0]
Beethoven 2,5,5,20,8,15,22,5, 14,0, 0]

[
[
[
[
[
Brahms [2,18,1,8,13,19,0,0,0,0, 0]
[
[
[
[

Tchaikovsky 20,3,8,1,9,11, 15, 22, 19, 11, 25]

27

Example: Sorting Names

Iteration 5

Original Name

Encoded Name

Bach

Liszt

Haydn
Schubert
Tchaikovsky
Chopin
Beethoven
Wagner
Brahms
Mozart

[2,1,3,8,0,0,0,0,0,0,0]

[12, 9, 19, 26, 20, 0,0, 0, 0, 0, 0]

[8, 1,25, 4, 14,0, 0, 0, 0, 0, 0]

[19, 3, 8,21, 2, 5, 18, 20, 0, 0, 0]
[20, 3,8, 1,9, 11, 15, 22, 19, 11, 25]
[3,8,15,16,9, 14,0, 0, 0, 0, 0]
[2,5,5, 20,8, 15,22, 5,14, 0, 0]
[23,1,7,14,5,18,0,0,0,0,0]
[2,18,1,8,13,19,0,0,0,0,0]

[13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]

28

Example: Sorting Names

Iteration 6

Original Name

Encoded Name

Bach
Schubert
Wagner
Beethoven
Tchaikovsky
Chopin
Brahms
Haydn
Mozart

Liszt

2,1,3,8,0,0,0,0,0,0, 0]
19,3,8,21,2,5,18,20,0,0,0]
23,1,7,14,5,18,0,0,0,0, 0]
2,5,5,20,8,15,22,5, 14,0, 0]
20,3,8,1,9, 11, 15,22, 19, 11, 25]
3,8,15,16,9, 14,0,0,0,0, 0]
2,18,1,8,13,19,0,0,0,0, 0]
81,25, 4 14,0,0,0,0,0, 0]

13, 15,26, 1, 18, 20, 0,0, 0, 0, 0]

[
[
[
[
[
[
[
[
[
[12,9, 19,26, 20,0,0,0,0, 0, 0]

29

Alex

Alex

Example: Sorting Names

Iteration 7
Original Name | Encoded Name
Tchaikovsky [20, 3,8,1,9,11, 15, 22, 19, 11, 25]
Mozart [13, 15, 26, 1,18,20,0,0,0,0, 0]
Haydn [8,1,25,4,14,0,0,0,0,0,0]
Bach (2,1, 3,80,0000,0, 0]
Brahms [2, 18, 1, 8,13, 48, 1, 0, ©, @, 0]
Wagner (23,1, 7, 14,5,18,0,0,0,0, 0]
Chopin [3,8,15,16,9,14,0,0,0,0, 0]
Beethoven [2,5,5, 20,8,15,22,5,14,0, 0]
Schubert [19, 3, 8, 21,2,5,18,20,0,0, 0]
Liszt [12,9, 19, 26,20,0,0,0,0, 0, 0]

30

Alex

Example: Sorting Names

Iteration 8

Original Name

Encoded Name

Brahms
Bach
Beethoven
Wagner
Tchaikovsky
Schubert
Chopin
Liszt

Haydn
Mozart

2,18,1,8,13,19,0,0,0,0,0]
2,1, 3 8,0,0,0,0,0,0,0]

5,20, 8, 15, 22, 5, 14, 0, 0]
23 1 7,14,5,18,0,0,0,0,0]
20,3,8,1,9,11, 15,22, 19, 11, 25]
19, 3, 8 21,2,5,18,20,0,0,0]
3,8,15,16,9,14,0,0,0,0, 0]
12,9, 19, 26, 20,0, 0, 0, 0, 0, O]
8,1,25, 4 14,0,0,0,0,0, 0]

[
[
[2,
[
[
[
[
[
[
[13, 15, 26, 1, 18, 20, 0, 0, 0, 0, 0]

31

Alex

Alex

Example: Sorting Names

Iteration 9

Original Name

Encoded Name

Bach
Haydn
Wagner
Tchaikovsky
Schubert
Beethoven
Chopin
Liszt
Mozart
Brahms

[2,1,3,8,0,0,0,0,0,0,0]
[8,1,25,4,14,0,0,0,0,0, 0]
[23,1,7,14,5,18,0,0,0,0, 0]
[20,3,8, 1,9, 11, 15, 22, 19, 11, 25]
[19,3,8,21,2,5,18,20,0,0,0]
[2, 5,5, 20,8,15,22,5, 14,0, 0]
[3,8,15,16,9,14,0,0,0,0,0]
[12, 9,19, 26, 20,0,0,0,0,0,0]
[13, 15, 26, 1, 18, 20, 0, 0, 0, 0, O]
[2,18,1,8,13,19,0,0,0,0, 0]

32

Alex

Example: Sorting Names

[teration 10

Original Name

Encoded Name

Bach
Beethoven
Brahms
Chopin
Haydn

Liszt
Mozart
Schubert
Tchaikovsky
Wagner

2,1,3,80000,0,0,0]
2,5,5,20,8,15,22,5, 14,0, 0]
2,18,1,8,13,19,0,0,0,0, 0]
3,8,15,16,9, 14,0, 0,0, 0, 0]
8,1,25,4,14,0,0,0,0,0, 0]

12,9, 19, 26, 20,0, 0, 0, 0, 0, 0]
13, 15, 26, 1, 18, 20,0, 0, 0, 0, O]
19,3, 8,21, 2,5,18,20,0,0,0]
20, 3,8,1,9,11, 15, 22, 19, 11, 25]

[
[
[
[
[
[
[
[
[
[23,1,7,14,5,18,0,0,0,0,0]

e('\l‘\ (mﬂb\\

20
n=1
Vo

33

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Bucket Sort

Bucket Sort

As the name suggests, bucket sort distributes the input into a number of distinct
buckets based on the input value.

- The key here is the assumption that the data is uniformly distributed.

- If the data were not uniformly distributed, then more elements would be
concentrated.

- The uniformity ensures that a relatively equal number of data points are
placed in each bucket.

- This is also a convenient assumption to have for a parallelized
implementation.

34

Alex

Bucket Sort

- Bucket sort places values into a bucket based on their most significant digits.

- Once the values are assigned, then a simple sort such as insertion sort is
used to sort the values within each bucket.

- Once sorted, the buckets are concatenated together to produce the final
output.

35

Bucket Sort

Under the assumption of uniformity, each bucket will contain no more than 1/n of
the total elements.

This implies that each call to insertion_sort will take O(1) time.

36

Bucket Sort

A B
1 [78] ol/]
2 .17 1| 412 F={177]
3139 2| 21] >3]] >[26[/]
4 |.26] 3|
s 72 4|/
6 .94 5|/
7 | 21| 6 i—)
8 [.12] 7 | =72 578/
o 23] 5|/
10| 68| 9o | +—=>J0a]/]
(a) (b)

An example of bucket sort sorting a list of floats. ¥

Alex

Alex

Alex

Bucket Sort

[T, 26,0, 1,25

gtol",ra , 1

def bucket _sort(A): 2\, N \ 13

len(A)
[[] for i in range(n)]

n
5 2

for i in range(n):
Blint(n * A[i])].append(A[i f‘L

for i in range(n):

insertion_sort(B[il)

return B

38

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Initializing the array and placing each item into a bucket takes ©(n) time.
The call to each insertion sort is O(n?).

i \s
L do
The recurrence is given as | ek V.
A7

-0 39

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

The key is to determine the expected value E[n?].

We will frame the problem as a binomial distribution, where a success occurs
when an element goes into bucket /. f

- pis the probability of success: p = %‘/(\ V>
- g is the probability of failure: g =1— 1.

40

Alex

Alex

Alex

Alex

Alex

Alex

Under a binomial distribution, we have that E[n;] = np = n(1/n) =1 and
Var[n]_npq_1—1/n wherep=1/nandg=1-1/n.

T

The expected value is then

{ (
E[n?] = Var[n] + E[n]* =1-1/n+1
4

e ——

41

Alex

Alex

Alex

Alex

Alex

Alex

Alex

Alex

This gives way to the fact that

42

Alex

Alex

Alex

	Introduction
	Establishing a Lower Bound on Comparison Sorts
	Counting Sort
	Radix Sort
	Bucket Sort

