CSE 4373/5373 - General Purpose GPU
Programming

CUDA Architecture

Alex Dillhoff

University of Texas at Arlington



CUDA Architecture

A CUDA capable GPU is made up of a number of Streaming
Multiprocessors (SMs).

Each SM has a number of cores that execute instructions in
parallel.

The H100 has 144 SMs (you can actually count them by eye).
Each SM has 128 FP32 cores for a total of 18,432 cores.



CUDA Architecture

Historically, CUDA has used DDR memory, but newer architectures
use high-bandwidth memory (HBM).

This is closely integrated with the GPU for faster data transfer.



CUDA Architecture

o
o
i
T
<
Q
=
=




Block Scheduling



Block Scheduling and Synchronization

When a kernel is launched...

e Configured blocks are assigned directly to SMs.
e All threads in each block will be assigned to each SM (permits

communication).
e The number of blocks assigned to an SM may vary.

e All threads in a block can share data as well.



Synchronization

e Threads that run on the same block can be synchronized using
syncthreads ().

e When a kernel reaches this call, the execution of the threads
will stop until all of them have reached that point.

e This construct is typically used when threads need to share
data or are dependent on the results of other threads.



Synchronization

Be careful not to use this incorrectly.

void kernel(int *a, int *b, int *c) {
if (threadIdx.x % 2 == 0) {
// Perform some work
__syncthreads() ;
else {
// Perform some other work

__syncthreads();



Synchronization

e Unlike a general-purpose processor, a GPU does not have
control hardware for each individual core.

e All threads must execute the same instructions using shared

resources.



Synchronization

e In the previous example, it is possible for some threads to
branch off into a different part of the program.

e Only one of the paths can be executed based on this limitation.

e This is called control divergence



Synchronization

e Even though the call looks the same, each __syncthreads()
is different.

e The first call will only synchronize the threads that executed
the first path.

e The second call will only synchronize the threads that executed
the second path.

e The result is either undefined output or a deadlock, in which
the threads will never reach the second call.

10



Synchronization

e Since threads in separate blocks cannot be synchronized, the
blocks can be executed in any arbitrary order.

e Problems requiring more sophisticated synchronization require
kernel splitting, atomic operations, cooperative groups, or
dynamic parallelism.

11



Warps



SMs execute threads in a group of 32 called warps.

Since Compute Capability 1.0, the warp size has not changed.

When a block is assigned to an SM, it is divided into warps.

You can determine the number of warps assigned to an SM

based on the warp size.

12



For example, if you have a block of 256 threads, the SM has 256 /
32 = 8 warps.

If the block size is not evenly divisible by the number of warps per
SM, the last warp will be padded with inactive threads.

13



Block 1 Warps — Block 2 Warps Block 3 Warps

L AL

Warps across several blocks (source: NVIDIA DLI)

14



When multi-dimensional thread blocks are assigned to an SM, the
threads are linearly mapped in a row-major order before being
partitioned into warps.

For example, a 2D block of 16 x 16 threads will be mapped to a 1D
array of 256 threads.

The first 32 threads will be assigned to the first warp, the next 32
to the second warp, and so on.

15



e Warps are executed following the Single-Instruction,
Multiple-Data (SIMD) model.

e There is a single program that runs the same instruction on all
threads in the same order.

e If a thread would have executed a different path based on its
input data, it would not be executed with the others.

e There is no control hardware for each individual thread.

16



c- - Memory N 1/0

Processing Unit

Shared =

Regist
Memory AT egister

File

7y I
A I |
A 1
Control Unit

Processor (SM)

SMs are SIMD processors (source: NVIDIA DLI)

17



The advantage of this model is that more physical space can be
dedicated to ALUs instead of control logic.

In a traditional CPU, each processing core would have its own
control logic.

The tradeoff is that different cores can execute their own programs
at varying points in time.

18



Control Divergence

Since a traditional CPU has separate control logic for each core, it
can execute different programs at the same time.

If the program has a conditional statement, it does not need to
worry about synchronizing instructions with another core.

This is not the case with a GPU.

19



Control Divergence

Since every thread in a warp executes the same instruction, only
threads that would execute the same path can be processed at the
same time.

If a thread would execute a different path, it is not executed with
the others.

This is called control divergence.

20



Control Divergence

What exactly happens then if a warp has 32 threads of which only
16 would execute the same path?

21



Control Divergence

What exactly happens then if a warp has 32 threads of which only
16 would execute the same path?

Multiple passes are made until all possible paths of execution are
considered based on the divergence of the threads.

The SM would process the first 16 threads that all follow the same
path before processing the second 16 threads.

21



Control Divergence

This also applies to other control flow statements such as loops.
Consider a CUDA program that processes the elements of a vector.

Depending on the loop and data used, the threads may execute a
different number of iterations.

As threads finished their iterations, they would be disabled while
the remaining threads continue.

22



Control Divergence

There are some cases in which it is apparent that your program will
exhibit control divergence.

For example, if you have a conditional statement based on the

thread index, you can be sure that the threads will execute different
paths.

23



Control Divergence Example

Consider a 200 x 150 image that is processed by a CUDA program.

The kernel is launched with 16 x 16 blocks which means there are
% = 13 blocks in the x-direction and 11%0 = 10 blocks in the

y-direction.
The total number of blocks is 13 x 10 = 130.

Each block has 256 threads, or 8 warps. That means that the total
number of warps is 130 x 8 = 1040.

24



Warp Scheduling



Warp Scheduling

e An SM can only execute instructions for a small number of
warps.

e The architecture allows for more warps than the SM can
execute since warps will often be waiting for some result or
data transfer.

e Warps are selected based on a priority mechanism.

e This is called latency tolerance.

23



Warp Scheduling

e Zero-overhead thread scheduling allows for selecting warps
without any overhead.

e A CPU has more space on the chip for caching and branch
prediction so that latency is as low as possible.

e GPUs have more floating point units and can switch between
warps, effectively hiding latency.

26



Warp Scheduling

e The execution states for all assigned warps are stored in the
hardware registers, eliminating the need to save and restore
registers when switching between warps.

e Under this model, it is ideal for an SM to be assigned more
threads than it can execute at once.

e This increases the odds that the SM will have a warp ready to
execute when another warp is waiting for data.

27



Resource Partitioning



Resource Partitioning

e There is a limit on the number of warps that an SM can
support.

e Goal: maximize the throughput of an SM by assigning as many
warps as possible.

e The ratio of warps assigned to the number of warps an SM
supports is called occupancy.

e If we understand how the architecture partitions the resources,
we can optimize our programs for peak performance.

28



Resource Partitioning

GH100 Full GPU with 144 SMs (source: NVIDIA)



Resource Partitioning

The H100 supports 32 threads per warp, 64 warps per SM, 32
blocks per SM, and 2048 threads per SM.

Depending on the block size chosen, the number of blocks per SM
will differ.

30



Resource Partitioning

2048 __ — 8

e A block size of 256 threads means that there are o

blocks per SM.

e This block size would maximize occupancy since the
architecture supports more than 8 blocks per SM.

e The number of threads per block is less than the limit of 1024.

31



Resource Partitioning

What if we chose 32 threads per block?

32



Resource Partitioning

What if we chose 32 threads per block?

Then there would be 2048 = 64 blocks per SM, but the device only
supports 32 blocks per SM.

With only 32 blocks allocated with 32 threads per block, a total of
1024 threads would be utilized.

The occupancy in this case is ;8% = 50%.

32



Resource Partitioning

Historically, NVIDIA provided an excel spreadsheet to compute

occupancy.

It has since been deprecated in favor of Nsight Compute, a tool that
provides more information about the performance of your program.

We will cover this tool in a later lecture.

83



Including Registers

Another factor for occupancy is the number of registers used per
thread.

e The H100 has 65,536 registers available for use.
e As long as your program does not use more than this, you can

follow the simpler occupancy calculation from above.

e With 2048 threads, that leaves 6363386 = 32 registers per thread.

34



Including Registers

e If we run a program with 256 threads/block, there would be

2205468 8 blocks per SM.

e This means that there are 8 * 256 = 2048 threads per SM.

e With 31 registers per thread, the total number of registers
used per SM is 2048 * 31 = 63,488.

e In this case we still maximize occupancy since
63,488 < 65, 536.

85



Including Registers

What if each thread required 33 registers?

36



Including Registers

What if each thread required 33 registers?

The total number of registers used per SM would be 2048 * 33 =
67,584.

36



Including Registers

How would these resources be partitioned?

37



Including Registers

How would these resources be partitioned?

Only 7 blocks could be assigned since
7 %256 * 33 = 59,136 < 65,536.

This means that only 7 * 256 = 1792 threads would be used,
reducing the occupancy to %Zé = 87.5%.

37



Dynamic Launch Configurations



Dynamic Launch Configurations

e Depending on our application requirements, we may need to
support a range of devices across several compute capabalities.

e The CUDA API makes this simple by providing several
different functions for querying device properties.
e These can be called from the host before configuring and

launching a kernel.

38



Dynamic Launch Configurations

Property Description

name Name of the device

totalGlobalMem Total amount of global memory available on the device in bytes
sharedMemPerBlock Shared memory available per block in bytes
regsPerBlock 32-bit registers available per block
warpSize Warp size in threads
maxThreadsPerBlock Maximum number of threads per block
maxThreadsDim Maximum size of each dimension of a block
maxGridSize Maximum size of each dimension of a grid
multiProcessorCount Number of SMs on the device
maxThreadsPerMultiProcessor | Maximum number of threads per SM

39



Dynamic Launch Configurations

When we first launch a program that utilizes CUDA, we will want
to know how many devices are available.

Later in this course, we will develop programs that utilize multiple

GPUs, but we would also want our code to adapt dynamically to a
single GPU.

40



Summary



e The CUDA architecture is designed to maximize the number of
threads that can be executed in parallel.

e This is achieved by partitioning the resources of the GPU into
SMs.

e Each SM can execute a small number of warps at a time.

41



e The number of warps that can be assigned to an SM is called
occupancy.

e The occupancy is determined by the number of threads per
block, the number of blocks per SM, and the number of
registers used per thread.

e The CUDA API provides functions for querying device
properties so that the kernel launch can be configured
dynamically.

42



	Block Scheduling
	Warps
	Warp Scheduling
	Resource Partitioning
	Dynamic Launch Configurations
	Summary

