
CSE 4373/5373 - General Purpose GPU
Programming
Heterogeneous Data Parallel Computing

Alex Dillhoff

University of Texas at Arlington

1



Heterogeneous Data Parallel Computing

• Data parallelism is achieved through independent
computations on each sample or groups of samples.

• GPU programs are defined through a kernel function.
• The kernel defines what is executed in each independent
thread.

• Data must be transferred between the CPU (host) and
GPU (device).

2



CUDA C Programs



CUDA C Programs

A basic CUDA program consists of:

• A kernel function defining the work to be performed on
each thread.

• Data that is accessible on the device.
• Device memory allocation.
• Memory transfer from the host to the device.
• Execution of the kernel from the host machine.
• Data transfer from the device back to the host.
• Memory cleanup.

3



CUDA C Programs

This process is sequential, but the host does not need to wait
for the device to finish before continuing.

As we write more complicated programs, we will take
advantage of both task and data parallelism.

4



Example: Vector Addition



Vector Addition

Hwu et al. refer to vector addition as the ”Hello World” of
CUDA programming.

It is an embarrassingly parallel problem, meaning that it is
trivial to parallelize.

5



Vector Addition

Given two vectors of the same length, x and y, the vector
addition operation is defined as:

zi = xi + yi ∀i ∈ {1, . . . ,n}

The vector addition operation is commutative and associative.
The operation can be performed in parallel on each element
of the vectors.

6



Vector Addition

A simple implementation in C.

void vecAdd(int *x_h, int *y_h, int *z_h, int n) {
for (int i = 0; i < n; i++) {

z_h[i] = x_h[i] + y_h[i];
}

}

7



Vector Addition

One small note about the variable names: it is common to
use the suffix _h to denote a variable that is allocated on the
host (CPU) and _d to denote a variable that is allocated on
the device (GPU).

In this case, the vector addition operation is performed on
the host machine.

8



Vector Addition

An equivalent implementation in CUDA C++.

__global__
void vecAdd(float *x_d, float *y_d, float *z_d, int n) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n) {

z_d[i] = x_d[i] + y_d[i];
}

}

9



Vector Addition

This kernel executes on a single thread.

The thread index is computed using built-in variables
blockIdx.x, blockDim.x, and threadIdx.x.

The details of how these variables are defined are not
important right now. The main point is that each kernel is
executed on a single thread. For a GPU with thousands of
individual threads, this kernel will be executed thousands of
times in parallel. 10



Vector Addition

The __global__ keyword placed before the function
definition indicates that the function can be called from both
the host and the device.

Keyword Description
__global__ Executed on the device, callable from the host and device
__device__ Executed on the device, callable from the device only
__host__ Executed on the host, callable from the host only

11



Vector Addition

Unless otherwise specified, functions that you define will be
executed on the host.

It is not necessary to specify the __host__ keyword.

If you want the compiler to generate both host and device
code, you can use the __host__ __device__ keyword
combination.

12



Calling the Kernel

To call this kernel, we essentially need two sets of data: one
on the host and one on the device.

Assumption: the data is already given on the host as x_h and
y_h with length n.

13



Memory Allocation

The first step is to allocate memory on the device using
cudaMalloc.

The address given can be printed, but the data cannot be
accessed directly from the host.

float *x_d, *y_d, *z_d;
cudaMalloc(&x_d, n * sizeof(float));
cudaMalloc(&y_d, n * sizeof(float));
cudaMalloc(&z_d, n * sizeof(float));

14



Memory Allocation

The first argument is a pointer to address of the variable.

Remember that taking the address of a pointer will result in a
double pointer.

This is necessary because the function will need to
dereference the pointer to store the address to the allocated
data.

15



Memory Allocation

The memory that is allocated on the device is called global
memory.

It is accessible by all threads on the device.

There is also a small amount of shared memory that is
accessible by threads within a single block along with a
unified memory model.

16



Memory Allocation

Figure 1: Overview of memory layout (source: NVIDIA DLI).
17



Memory Transfer

Data is transferred between the host and CPU via cudaMemcpy.

The arguments are the destination pointer, source pointer,
size, and direction.

The direction is an enumerated type that can be one of the
following:

• cudaMemcpyHostToDevice
• cudaMemcpyDeviceToHost
• cudaMemcpyDeviceToDevice

18



Grids, Blocks, and Threads

The CUDA programming model is based on a hierarchy of
grids, blocks, and threads.

• A grid is a collection of blocks.
• A block is a collection of threads.
• The number of blocks and threads that can be executed
in parallel is limited by the hardware.

• The number of blocks and threads that can be executed
in parallel is called the grid size and block size,
respectively.

19



Grids, Blocks, and Threads

Figure 2: A single block of 256 threads (source: NVIDIA DLI).
20



Grids, Blocks, and Threads

Threads within each block are executed in parallel and do not
interact with threads in other blocks.

For threads within a single block, there is a small amount of
shared memory as well as other tools for communication.

21



Kernel Execution

vecAdd<<<ceil(n / 256.0), 256>>>(x_d, y_d, z_d, n);

22



Kernel Execution

Calling the kernel function almost looks like any ordinary
function call; the main difference being the inclusion of the
<<< and >>> syntax.

These are used to specify the size of the grid and blocks,
respectively.

23



Kernel Execution

In this example, we specified that each block has 256 threads.

We can use that specification to dynamically determine the
number of blocks based on the input size.

The number of blocks is computed as the ceiling of the input
size divided by the number of threads per block to ensure
that there are enough blocks to cover the entire input size.

24



Kernel Execution

Returning to the kernel function, the thread index is
computed using built-in variables blockIdx.x, blockDim.x,
and threadIdx.x.

These are defined as struct variables.

25



Kernel Execution

Modern GPUs have a 3-dimensional grid, but we only need to
worry about the first dimension for now.

The thread index is computed as the product of the block
index and the number of threads per block plus the thread
index within the block.

26



Kernel Execution

It is possible to have more threads than there are blocks.

As much as possible, you should try and work with powers of 2
to ensure that the hardware is used as efficiently as possible.

27



Kernel Execution

In this example, we check to see if the thread index is less
than the input size.

If it is, the vector addition operation is performed. Otherwise,
the function exits.

It isn’t worth worrying about now, but we will see that
conditional statements like this can have significant
performance implications.

28



Kernel Execution

The resources available to you are dependent on the device
and its compute capability.

This document lists the compute capabilities for various
NVIDIA GPUs.

29

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities


Kernel Execution

One other thing to note is that the kernel function is executed
asynchronously.

Once the kernel is launched, the host will continue executing
code as normal.

In our example, our host may try to copy the data back before
the kernel has finished executing.

30



Kernel Execution

We can make sure the kernel has finished execution by calling
cudaDeviceSynchronize().

This should happen directly before we transfer data back to
the host.

31



Transferring Data Back to the Host

Once the kernel has finished executing on the device, we
need to transfer the data back to the host.

cudaMemcpy(z_h, z_d, n * sizeof(float), cudaMemcpyDeviceToHost);

32



Cleaning Up

Once we are done with the data on the device, we can free the
memory using cudaFree.

free(x_h);
free(y_h);
free(z_h);
cudaFree(x_d);
cudaFree(y_d);
cudaFree(z_d);

33



Error Checking



Error Checking

The functions we use in the CUDA API return an error code.

We can use this to create robust code that checks for errors
and either corrects them or exits gracefully.

34



Error Checking

cudaError_t err = cudaMalloc(&x_d, n * sizeof(float));
if (err != cudaSuccess) {

fprintf(stderr, "Error: %s\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);

}

A common pattern is to define a macro that checks the result
of a CUDA function and exits if there is an error.

35



Error Checking

#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file,

int line, bool abort=true) {
if (code != cudaSuccess) {

fprintf(stderr,"GPUassert: %s %s %d\n",
cudaGetErrorString(code), file, line);

if (abort) exit(code);
}

}

36


	CUDA C Programs
	Example: Vector Addition
	Error Checking

