

CSE 6363 - Machine Learning

Gaussian Distribution

Alex Dillhoff

University of Texas at Arlington

What is covered?

1. Univariate Gaussian
2. Multivariate Gaussian
3. Estimating parameters via MLE

Univariate Gaussian Distribution

The univariate Gaussian is written as

$$\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x - \mu)^2\right),$$

where μ is the mean and σ^2 is the variance. The probability distribution function is plotted in the figure below.

Univariate Gaussian Distribution

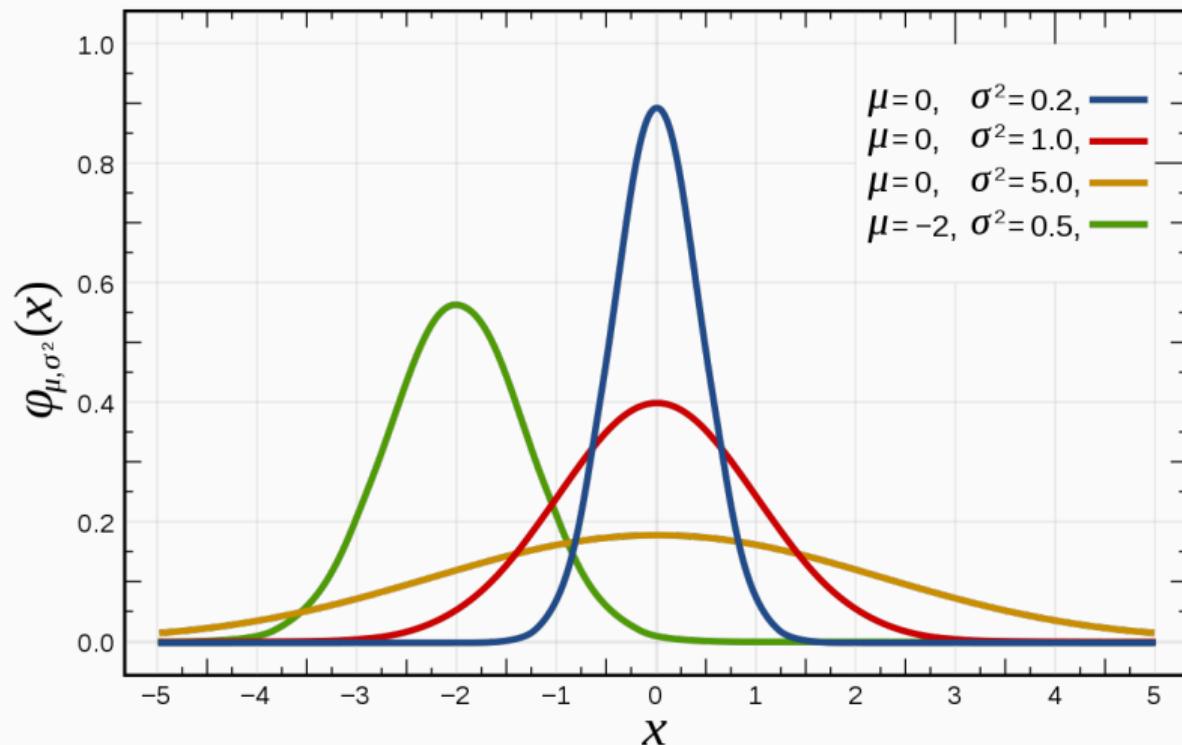


Figure 1: A plot of different Gaussians with varying mean and variance. Source: Wikipedia

Univariate Gaussian Distribution

Changing the value of μ shifts the Gaussian either left or right.

As the variance increases, the pdf flattens. A small variance produces a pdf with a peak.

The pdf must integrate to 1.

Univariate Gaussian Distribution

The **standard deviation** is simply the square of the variance: $\sigma = \sqrt{\sigma^2}$.

This quantity is useful as it represents the variance using the same units as the input x .

Estimating Parameters

Given some dataset $X = x_1, \dots, x_n$, we can estimate a Gaussian that best fits the data via Maximum Likelihood Estimation.

This requires maximizing the log-likelihood function.

Estimating Parameters

The likelihood function is the probability of the data given the parameters, $p(X|\theta)$.

For a Gaussian, this is simply the pdf: $p(X|\theta) = \mathcal{N}(X|\mu, \sigma^2)$.

Estimating Parameters

Taking the log of this function results in

$$\ln \mathcal{N}(X|\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2.$$

Estimating Parameters

$$\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x - \mu)^2\right),$$

$$\ln \mathcal{N}(X|\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2}\sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2.$$

Estimating Parameters

Taking the derivative with respect to μ and σ^2 yields the maximum likelihood estimates

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2.$$

Multivariate Gaussian Distribution

The multivariate Gaussian is written as

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp \left\{ -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right\}$$

Multivariate Gaussian Distribution

$\mu \in \mathbb{R}^D$ is the mean vector

$\Sigma \in \mathbb{R}^{D \times D}$ is the covariance matrix

$|\Sigma|$ is the determinant of Σ

Multivariate Gaussian Distribution

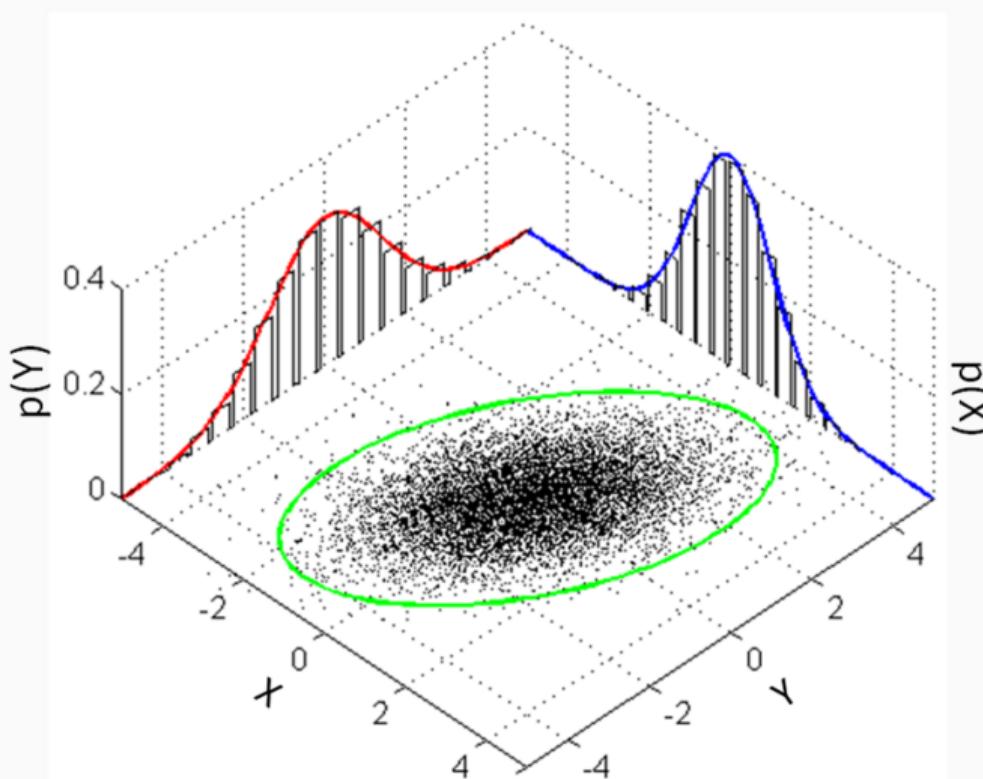


Figure 2: Multivariate normal with visualization of mean and covariance. Source: Wikipedia

Estimating Parameters

Given a dataset $\mathbf{X} = \mathbf{x}_1, \dots, \mathbf{x}_n$, we can again use MLE to estimate the parameters of the distribution.

For a multivariate distribution, the parameter estimates are given as follows

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$$
$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i - \hat{\mu})(\mathbf{x}_i - \hat{\mu})^T.$$