CSE 6363 - Machine Learning

Kernel Functions

Alex Dillhoff

University of Texas at Arlington

What is covered?

1. Definition
2. Dual Representation

3. Common kernel functions

Kernel Functions

Parametric models use training data to estimate a set of parameters that can

then be used to perform inference on new data.

An alternative approach uses nonparametric methods: the function is
estimated directly from the data.

Kernel Functions

One possible downside to such an approach is that it becomes less efficient as
the amount of training data increases.

Explicitly transforming into a feature space such that the data becomes linearly
separable may be intractable.

Kernel Functions

Consider sequential data such as text or audio.

If each sample has a variable number of features, how do we account for this
using standard linear models with a fixed number of parameters?

Kernel Functions

These situations can be overcome through the use of the kernel trick.

Computing a measure of similarity between samples in the feature space obviates
the need to directly transform each individual sample to that space.

Kernel Functions

A kernel function is defined as

k(x,x') = ¢(x)"o(x),

where ¢ is some function which transforms the input to a feature space.

Kernel Functions

Methods that require part or all of the training data to make prediction will
benefit from using kernel representations, especially when using high dimensional
data.

Instead of transforming the data into a high dimensional space which may be
computationally intractable, a measure of similarity via the inner product is used.

Kernel Functions

The inner product is not the projection into some space.

It represents the outcome of that projection.

Polynomial Kernels

To gain a visual understanding of the usefulness of kernel functions, let's look at
a simple example using a polynomial kernel.

k(x,x') = (x"x' + ¢)?.

10

Polynomial Kernels

This is a common choice for solving problems akin to polynomial regression.
We can use this kernel to present a visual explanation of kernel functions.

Consider the following dataset.

11

Feature #1

Figure 1: Binary classification dataset that is not linearly separable.

1.0 A

0.5

0.0 4

~1.01

Training data

w o o &

3

&

%
°@e

A,

o
%

¥

7
R

..

» .
. ooV
g“ha"-'-“'

T
-1.0

T T
-0.5 0.0
Feature #0

T
0.5

Polynomial Kernels

12

Polynomial Kernels

It is easy enough to see that this dataset could not be separated using a
hyperplane in 2D.

We could separate the two using some nonlinear decision boundary like a circle.

13

Polynomial Kernels

Can we change perspective such that we see a linear decision boundary?

14

Polynomial Kernels

If we could transform this into 3D space, we could come up with some features
such that it is linearly separable in 3D.

For example, let ¢(x) = (X2, x2, v/2x1x2).

15

Polynomial Kernels

Training data

Figure 2: Dataset transformed into a 3D feature space.

16

Polynomial Kernels

From this perspective, we can clearly see that the data is linearly separable.
The question remains: if we only have the original 2D features, how do we

compare points in this 3D features space without explicitly transforming each

point?

17

Polynomial Kernels

The kernel function corresponding to the feature transform above is

k(x,x') = (x"x)?
= (x1x] + x2%5)?
= 2x1x) X0 + (x1x1)% + (x2%5)?

= 6(x)"o(x)

18

Polynomial Kernels

where

19

Dual Representation

How do we utilize the kernel trick for our problem?

The key to taking advantage of the kernel trick relies on reformulating our linear
model into a dual representation.

20

Dual Representation

Consider the least squares loss with L2 regularization.

Jw) = 5 S (WT6(x) — i)+ Sww

i=1

21

Dual Representation

¢ is a basis function that transforms the input.
This could also be a simple identity function in which ¢(x) = x.

To solve for w, we take the gradient of J(w) with respect to w and set it to 0.

22

Dual Representation

23

Dual Representation

We can formulate this as a matrix-vector product by letting

¢(x1)" I
P = : and a; = —X(wTé(x,-) — i)

¢(xn)"

24

Dual Representation

w==®"a where a=a,...,a,]".

The dual representation is derived by reformulating J(w) in terms of a.

23

Dual Representation

1 1 A
J(a) = EaT<I>q>T<I><I>Ta —a' ®d'y + EyTy + EaT<INI>Ta,

where y = [y1, ..., ¥n].

26

Dual Representation

n

o) = 3 3 WTx) o+ 5w
J(a) = %aTQﬂI)T‘I)@Ta —a'®dy + %yTy + %aTQNI)Ta
¢(X1)T 1
=1 |.a= —X(WTQS(X:') — i),
d(xn) "

w==®"a anda=[a,...,a,]".

27

Dual Representation

DP7 relate to our original kernel form: ¢(x;)" ¢(x;).

This product defines a Gram matrix K = ®®7 whose elements are k(x;, x;).

28

Dual Representation

Thus, we can rewrite J(a) as

1 1 A
J(a) = iaTKKa —a'Ky+ EyTy + EaTKa.

29

Dual Representation

Solving for a can be done by computing the gradient of J(a) with respect to a
and setting the result to 0.

VaJ(a) = KKa — Ky + AKa =0
Ka+\AMa—y=0
(K+X)a=y

a=(K+\)y.

30

Dual Representation

With a solved, we can complete the dual representation of our original linear
regression model.

31

Dual Representation

Recall that

h(x; w) = w’ ¢(x).
If we substitute w = ®"a, we get

f(x;a) = a’ ®o(x)

= [+ 20y)] o).

32

Dual Representation

The kernel form is apparent in the product ®¢(x).

83

Dual Representation

If we let k;(x) = k(x;,x) and

we can write the dual representation of our linear regression model as
F(x) = k(x)7(K + M)y,

34

Back to the Original Formulation

In this dual formulation, the solution for a can be expressed as a linear
combination of elements ¢(x).

85

Back to the Original Formulation

We start with

ai = —i(WT(ﬁ(X/‘) -)/i)-

Expanding this into individual coefficients yields

3= — (s (%) + -+ Wonm(x:) — 1)

A
= _%Cbl(xi) e %Chm(xi) + %

36

Back to the Original Formulation

We still need to do something about the term .

For this, we can multiply both sides of our equation by a convenient 1.

37

Back to the Original Formulation

That convenient 1 is

G1(x;) + -+ + dm(x;)
G1(xi) + - + dm(xi)

38

Back to the Original Formulation

By doing this and grouping the ¢; terms, we get

: 1 W
<§ Chu(xi) o dm(xi) 7)¢1(x’) i
: 1 W,
(yX . d1(Xi) + - + Pm(xi) - T)qu(x,)

39

Back to the Original Formulation

We can simplify this by introducing a term

40

Back to the Original Formulation

The solution can be rewritten as

Wm

(o= 2ot -+ (= 2)ente

41

Back to the Original Formulation

We can step backwards using intermediate results in the previous section to get
back to the original formulation of our linear regression model.

In the next lecture we will learn about Support Vector Machines, which use the
kernel trick to produce linear decision boundaries in higher dimensional spaces.

42

Constructing Kernels

A valid kernel function must satisfy the following conditions:

e Symmetry: k(x,x") = k(x',x)

e Positive semi-definite Gram Matrix: K >0

43

Constructing Kernels

If the feature space can be represented as a dot product, then it will satisfy the

first condition by definition.

The second condition can be shown by constructing a Gram matrix K and

showing that it is positive semi-definite.

A matrix K is positive semi-definite if and only if v’ Kv > 0 for all v € R".

44

Direct Construction of a Kernel

In this approach, we define a feature space ¢(x) and then compute the kernel
function as

k(x,X') = 6(x)T6(X).

45

Direct Construction of a Kernel

This is the approach used in the example from above.
T /)2.

In that example, we used the kernel function k(x,x’) = (x'x

For our 2D input, the feature space is ¢(x) = (x2, x2, V2x1x2).

46

Construction from valid kernels

As a more convenient approach, it is possible to construct complex kernels from
known kernels.

Given valid kernels k;(x,x’) and k»(x,x’), we can construct a new kernel k(x, x’)
using operations on the next slide.

47

Construction from valid kernels

o k(x,x') = cky(x,x’) for c >0

o k(x,x") = f(x)ki(x,x")f(x") for f(x)
o k(x,x') = ki(x,x') + ka(x,x)

o k(x,x") = ki(x,x")ka(x,x")

o K(x,x) = exp(ki(x, X))

o k(x,x") = tanh(ki(x,x’))

48

RBF maps to

infinite-dimensional space

RBF maps to oo dimensional space

It can be shown that the RBF kernel maps the input to an infinite-dimensional
space.

This is a result of the Taylor series expansion of the exponential function.

49

RBF maps to oo dimensional space

The RBF kernel is defined as

X — % 2
k(x,x") :exp<— %)

50

RBF maps to oo dimensional space

The Taylor series expansion of the exponential function is

51

RBF maps to oo dimensional space

Substituting the RBF kernel into the Taylor series expansion yields

ey _ = (=)
exp(— > :Z i .

202 n!
n=0

52

RBF maps to oo dimensional space

The benefit of this result is that it allows us to work in a high-dimensional space
without explicitly transforming the input.

This is especially useful when the input space is infinite-dimensional, such as with
text data.

It is also used to compare the similarity of documents without explicitly
transforming the input into a high-dimensional space.

53

	RBF maps to infinite-dimensional space

