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What is covered?

1. Formulation for binary classification

2. Gaussian Class Conditional Densities

3. Estimating parameters via MLE

4. Example using scikit-learn
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Discriminant Functions



Linear Discriminant Analysis

Discriminative functions assign each input vector x to a class depending on

whether the output met a particular threshold.

Modeling the conditional probability distribution p(Ck |x) grants us additional
benefits while still fulfilling our original classification task.
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Linear Discriminant Analysis

Let’s begin with a 2 class problem.

To classify this with a generative model, we use the class-conditional densities

p(x|Ci) and class priors p(Ci).
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Linear Discriminant Analysis

The posterior probability for C1 can be written in the form of a sigmoid function:

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)
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Linear Discriminant Analysis

Then multiply the numerator and denominator by

(p(x|C1))
−1

(p(x|C1))−1
.
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Linear Discriminant Analysis

This yields

1

1 + p(x|C2)p(C2)
p(x|C1)p(C1)

.
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Linear Discriminant Analysis

Noting that a = exp(ln(a)), we can rewrite further

1

1 + exp(−a)
,

where a = ln p(x|C1)p(C1)
p(x|C2)p(C2)

.
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Linear Discriminant Analysis

Writing this distribution in the form of the sigmoid function is convenient as it is

a natural choice for many other classification models.

It also has a very simple derivative which is convenient for models optimized

using gradient descent.
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Linear Discriminant Analysis

Given certain choices for the class conditional densities, the posterior probabilty

distribution will be a linear function of the input features:

ln p(Ck |x; θ) = wTx+ c ,
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Linear Discriminant Analysis

ln p(Ck |x; θ) = wTx+ c ,

where w is a parameter vector based on the parameters of the chosen probability

distribution, and c is a constant term that is not dependent on the parameters.
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Gaussian Class Conditional

Densities



Linear Discriminant Analysis

What do we mean by ”certain choices for the class conditional densities?”

One convenient choice is to use Gaussian Class Conditional Densities.
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Linear Discriminant Analysis

Let’s assume that our class conditional densities p(x|Ck) are Gaussian.

We will additionally assume that the covariance matrices between classes are

shared.

This will result in linear decision boundaries.
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Linear Discriminant Analysis

Since the conditional densities are chosen to be Gaussian, the posterior is given by

p(Ck |x; θ) ∝ πkN (x|µc ,Σ),

where πk is the prior probability of class k .

We can ignore the normalizing constant since it is not dependent on the class.
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Linear Discriminant Analysis

Since the conditional densities are chosen to be Gaussian, the posterior is given by

p(Ck |x; θ) ∝ πkN (x|µc ,Σ),

where πk is the prior probability of class k .

We can ignore the normalizing constant since it is not dependent on the class.
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Linear Discriminant Analysis

The class conditional density function for class k is given by

p(x|Ck ; θ) =
1

2πD/2

1

|Σ|1/2
exp

(
− 1

2
(x− µk)

TΣ−1(x− µk)
)
.
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Linear Discriminant Analysis

Let’s go back to the simple case of two classes and define a = ln p(x|C1)p(C1)
p(x|C2)p(C2)

.

First, we rewrite a:

a = ln p(x|C1)− ln p(x|C2) + ln
p(C1)

p(C2)
.
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Linear Discriminant Analysis

The log of the class conditional density for a Gaussian is

ln p(x|Ck ;µk ,Σ) = −D

2
ln(2π)− 1

2
ln |Σ| − 1

2
(x− µk)

TΣ−1(x− µk).
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Linear Discriminant Analysis

To simplify the above result, we will group the terms that are not dependent on

the class parameters since they are consant:

ln p(x|Ck ;µk ,Σ) = −1

2
(x− µk)

TΣ−1(x− µk) + c .
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Linear Discriminant Analysis

Observing that this quantity takes on a quadratic form, we can rewrite the above

as

ln p(x|Ck ;µk ,Σ) = −1

2
µkΣ

−1µk + xTΣ−1µk −
1

2
xTΣ−1x+ c .
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Linear Discriminant Analysis

Using this, we complete the definition of a:

a = ln p(x|C1)− ln p(x|C2) + ln
p(C1)

p(C2)

= −1

2
µ1Σ

−1µ1 + xTΣ−1µ1 +
1

2
µ2Σ

−1µ2 − xTΣ−1µ2 + ln
p(C1)

p(C2)

= xT (Σ−1(µ1 − µ2))−
1

2
µ1Σ

−1µ1 +
1

2
µ2Σ

−1µ2 + ln
p(C1)

p(C2)

= (Σ−1(µ1 − µ2))
Tx− 1

2
µ1Σ

−1µ1 +
1

2
µ2Σ

−1µ2 + ln
p(C1)

p(C2)
.
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Linear Discriminant Analysis

Finally, we define

w = Σ−1(µ1 − µ2)

and

w0 = −1

2
µ1Σ

−1µ1 −
1

2
µ2Σ

−1µ2 + ln
p(C1)

p(C2)
.
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Linear Discriminant Analysis

Thus, our posterior takes on the form

p(C1|x; θ) = σ(wTx+ w0).
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Multiple Classes



Multiple Classes

What if we have more than 2 classes?

Recall that a generative classifier is modeled as

p(Ck |x;θ) =
p(Ck |θ)p(x|Ck ,θ)∑
k ′ p(Ck ′ |θ)p(x|Ck ′ ,θ)

.
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Multiple Classes

As stated previously, πk = p(Ck |θ) and p(x|Ck ,θ) = N (x|µc ,Σ).

For LDA, the covariance matrices are shared across all classes.
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Multiple Classes

This permits a simplification of the class posterior distribution p(Ck |x;θ):

p(Ck |x;θ) ∝ πk exp
(
µT

k Σ
−1x− 1

2
xTΣ−1x− 1

2
µkΣ

−1µk

)
= exp

(
µT

k Σ
−1x− 1

2
µkΣ

−1µk + logπk

)
exp

(
− 1

2
xTΣ−1x

)
.
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Multiple Classes

The term exp
(
− 1

2
xTΣ−1x

)
is placed aside since it is not dependent on the class

k .

When divided by the sum per the definition of p(Ck |x;θ), it will equal to 1.
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Multiple Classes

Under this formulation, we let

wk = Σ−1µk

bk = −1

2
µT

k Σ
−1µk + logπk .
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Multiple Classes

This lets us express p(Ck |x;θ) as the softmax function:

p(Ck |x;θ) =
exp(wT

k x+bk )∑
k′ exp(w

T
k′x+bk′ )

.
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Decision Boundaries



Decision Boundaries

Classifications can be made by choosing the class with the highest posterior

probability.

Geometrically, this decision boundary has a direct connection to logistic

regression.

The decision boundary is the set of points where the posterior probability of two

classes is equal.

This is the set of points where the linear discriminant function is equal to 0.
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Decision Boundaries

In the previous section, the derivation for the posterior probability of class Ck was

written in the form of the softmax function

p(Ck |x; θ) =
exp(wT

k x+ bk)∑
k ′ exp(wT

k ′x+ bk ′)
.
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Decision Boundaries

In the binary case, the posterior for class 1 is given by

p(C1|x; θ) =
exp(wT

1 x+ b1)

exp(wT
1 x+ b1) + exp(wT

2 x+ b2)

=
1

1 + exp((w1 −w2)Tx+ (b1 − b2))

= σ((w1 −w2)
Tx+ (b1 − b2)).
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Decision Boundaries

Using the previous definition of bk , we can rewrite b1 − b2 as

b1 − b2 = −1

2
µT
1 Σ

−1µ1 + log π1 +
1

2
µT
2 Σ

−1µ2 − log π2

= −1

2
(µ1 − µ2)

TΣ−1(µ1 + µ2) + log
π1

π2
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Decision Boundaries

This can be used to define a new weight vector w′ and a point directly between

the two class means x0:

w′ = Σ−1(µ1 − µ2)

x0 =
1

2
(µ1 + µ2)− (µ1 − µ2)

log π1

π2

(µ1 − µ2)TΣ−1(µ1 − µ2)
.
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Decision Boundaries

With these new terms defined, we have that w′Tx0 = −(b1 − b2) and the

posterior probability for class 1 can be written in the form of binary logistic

regression:

p(C1|x; θ) = σ(w′T (x− x0)).
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Decision Boundaries

� The middle point between the two class means x0 is the point where the

posterior probability of class 1 is 0.5.

� This is the decision boundary between the two classes.

� If w′Tx > w′Tx0, then the posterior probability of class 1 is greater than 0.5

and the input vector x is classified as class 1.
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Decision Boundaries

� The split between the class priors controls the location of the decision

boundary.

� If the class priors are equal, then the decision boundary is the point directly

between the two class means.

� If the class priors are not equal, then the decision boundary is shifted

towards the class with the higher prior.
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Decision Boundaries

Decision boundary between two classes (Murphy, 2022). 38



Maximum Likelihood Estimation



Maximum Likelihood Estimation

Given this formulation using Gaussian densities, we can estimate the parameters

of the model via maximum likelihood estimation.

Assuming K classes with Gaussian class conditional densities, the likelihood

function is

p(X|θ) =
n∏

i=1

M(yi |π)
K∏

k=1

N (xi |µk ,Σk)
⊮(yi=k).
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Maximum Likelihood Estimation

Taking the log of this function yields

ln p(X|θ) =
[ n∑

i=1

K∑
k=1

⊮(yi = k) lnπk

]
+

K∑
k=1

[ ∑
i :yi=c

lnN (xn|µk ,Σk)
]
.
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Class Prior

For multinomial distributions, the class prior parameter estimation π̂k is easily

calculated by counting the number of samples belonging to class k and dividing it

by the total number of samples.

π̂k =
nk
n
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Class Prior

The parameter estimates are

ûk =
1

nk

∑
i :yi=k

xi

Σ̂k =
1

nk

∑
i :yi=k

(xi − µ̂k)(xi − µ̂k)
T
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Quadratic Discriminant Analysis



Quadratic Discriminant Analysis

Linear Discriminant Analysis is a special case of Quadratic Discriminant Analysis

(QDA) where the covariance matrices are shared across all classes.

Assuming each class conditional density is Gaussian, the posterior probability is

given by

p(Ck |x; θ) ∝ πkN (x|µk ,Σk).
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Quadratic Discriminant Analysis

Taking the log of this function yields

ln p(Ck |x; θ) = lnπk −
1

2
ln |Σk | −

1

2
(x− µk)

TΣ−1
k (x− µk) + c .
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Quadratic Discriminant Analysis

With LDA, the term 1
2
ln |Σk | is constant across all classes, so we treat it as

another constant.

Since QDA considers a different covariance matrix for each class, we must keep

this term in the equation.
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Quadratic Discriminant Analysis

In the more general case of QDA, the decision boundary is quadratic, leading to a

quadratic discriminant function.

As shown in the previously, the posterior probability function for LDA is linear in

x, which leads to a linear discriminant function.
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Summary



Summary

� LDA is a generative classifier that assumes Gaussian class conditional

densities.

� LDA assumes that the covariance matrices are shared across all classes.

� LDA can be extended to multiple classes.

� LDA can be estimated via maximum likelihood estimation.
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Summary

Given some data X and labels y, we can estimate the parameters of the model

via maximum likelihood estimation.

π̂k =
nk
n

ûk =
1

nk

∑
i :yi=k

xi

Σ̂k =
1

nk

∑
i :yi=k

(xi − µ̂k)(xi − µ̂k)
T
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Summary

Using these estimates, we can compute the weights and biases for our linear

discriminant functions.

wk = Σ−1µk

bk = −1

2
µT

k Σ
−1µk + logπk .
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Summary

Given these weights and biases, we can compute the class posterior probabilities

using the softmax function.

p(Ck |x;θ) =
exp(wT

k x+ bk)∑
k ′ exp(wT

k ′x+ bk ′)
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Summary

The class with the highest posterior probability is the class that is predicted.

ŷ = argmaxkp(Ck |x;θ)
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