
CSE 6363 - Machine Learning
Linear Regression

Alex Dillhoff

University of Texas at Arlington

1

Linear Models

We begin this course with a simple task:

Fit a linear model to some given data.

2

Linear Models

Figure 1: Data generated from a line with Gaussian noise. 3

Linear Models

We can make up plenty of stories about what this data
represents:

• Age vs relative wealth
• Time practicing vs ELO rating
• Housing prices versus size
• ...

4

Linear Models

The x values of the data are the raw input features.

The y values represent the observation or target.

5

Linear Models

If we fit a model to the data, we can make predictions about
our dataset as well as novel data points.

This is the inference task.

6

Linear Models

Since our dataset looks like it could be generalized with a line,
let’s see if we can fit some line to it.

y = mx+ b

7

Linear Models

The slope-intercept form has 2 parameters:

• m - The slope of the line
• b - The bias term

8

Linear Models

We’ll change the notation of these parameters such that they
fit in a parameter vector:

w = (w0,w1)

9

Linear Models

In general, we can represent our input features with a vector
x ∈ Rd, where d is the number of features.

For our simple dataset, d = 1.

10

Linear Models

We will also represent our model as a function h(x;w) such
that

h(x;w) = w0 + w1x1

11

Linear Models

Where is x0?

The only parameter that depends on the input features x is
w1.

For convenience, we will prepend a constant x0 = 1 to x such
that

x = (x0, x1)
12

Linear Models

Now the model can be written more compactly as

h(x;w) =
d∑
i=0

wixi = wTx

13

Linear Models

Given this representation, we can manually tune the
parameters w until we can visually inspect a ”good” line.

After some time, let’s say we land on w0 = 0 and w1 = −0.7.

14

Linear Models

Figure 2: Fitting our model with manual tuning. w = (0,−0.7) 15

Determining Fitness

Those choices may look good qualitatively, but we need a way
to determine how good they are quantitatively.

The classic choice here is to average the squared error
between each of the true observations and our model’s
prediction.

16

Determining Fitness

For this, we introduce a cost function or loss function:

J(w) = 1
2

n∑
i=1

(h(xi;w)− yi)2.

17

Determining Fitness

J(w) = 1
2

n∑
i=1

(h(xi;w)− yi)2

There are several loss functions that we could try (and we’ll
explore more later in the semester).

However, no matter what w we choose for this model, we can
never achieve an error of 0.

18

Determining Fitness

With our loss function defined, we can define the task of
finding the most optimal choice of w with respect to the loss
function as

min
w

J(w)

19

Stochastic Gradient Descent

Before looking at an analytical solution to this problem, we
turn to stochastic gradient descent.

1. Initialize w to some values (random or heuristic-based)
2. Evaluate the current model performance
3. Update the parameters based on the previous step
4. Repeat steps 2 and 3 until convergence

20

Stochastic Gradient Descent

How do we modify w such that J(w) will decrease?

∇J(w) yields the direction of greatest descent.

21

Stochastic Gradient Descent

How do we know when we’ve converged to a solution?

For this particular problem, the global minima is the only
minima:

∇J(w) = 0.

22

Stochastic Gradient Descent

How do we know when we’ve converged to a solution?

This is not the case for models that are not convex.

23

Stochastic Gradient Descent

Our choice of loss function is convenient because the
gradient is simple to calculate:

d
dwJ(w) = (h(xi;w)− yi)xi

24

Stochastic Gradient Descent

Given the gradient, how do we update our current
parameters?

The update rule:

wt+1 = wt − α
n∑
i=1

(h(xi;wt)− yi)xi.

25

Stochastic Gradient Descent

The hyperparameter α controls the size of the step during the
gradient update.

If the value is too large, the model may never converge to a
solution.

If the value is too small, it is more likely to get stuck in local
minima.

26

Stochastic Gradient Descent

Consider a much simpler function like f(w) = w2.

The update step of this function is

wt+1 = wt − α2w

27

Stochastic Gradient Descent

If our current parameter w = 1 and we update with α = 1, the
resulting weight is

wt+1 = 1− (1) ∗ 2(1)
= −1

That results in a huge step that only puts our estimate on the
other side of the gradient landscape.

28

Stochastic Gradient Descent

Figure 3: One step of SGD with function f(w) = w2. The green point is the
parameter estimate before the update.

29

Stochastic Gradient Descent

Another benefit to this rule is that it allows for batch updates.

When we work with very large datasets, it will be impossible
to update the gradient based on the entire set.

30

A Probabilistic Approach

We can also take a probabilistic approach and show that
minimizing the sum of squares is equivalent to maximizing
the posterior probability of our model.

31

A Probabilistic Approach

Recall Bayes’ Theorem:

p(w|X) = p(X|w)p(w)
p(X)

32

A Probabilistic Approach

Let’s adapt this to our model, where X ∈ Rn×d are the features
and Y ∈ Rn are the observations.

p(w|X, Y) = p(Y|X,w)p(w|X)
p(Y|X)

33

A Probabilistic Approach

The choice of using least squares as our loss function also
has statistical motivations.

We start with a reasonable assumption of a relationship
between the features of the data and the observed output.

Ŷ = f(X) + ϵ

34

A Probabilistic Approach

ϵ is an error term that is independent of the features and has
a mean of 0.

It represents

• sampling error,
• random noise,
• and any effects that are not captured from our model f.

35

A Probabilistic Approach

Given our model h(xi;w), we can define epsilon as

ϵi = h(xi;w)− yi.

36

A Probabilistic Approach

Another reasonable assumption: the discrepencies ϵi are i.i.d.
with variance σ2 and Gaussian PDF f.

Thus, the likelihood is

p(Y|X,w, σ) =
n∏
i=1

f(ϵi; σ).

37

A Probabilistic Approach

Recalling the definition of a Gaussian PDF:

f(ϵi; σ) =
1√
2πσ2

exp
(
−

ϵ2i
2σ2

)
.

38

A Probabilistic Approach

With the new parameter σ, the posterior distribution changes
slightly:

p(w|X, Y, σ) = p(Y|X,w, σ)p(w|X, σ)
p(Y|X, σ) .

39

A Probabilistic Approach

The prior term p(Y|X, σ) is a normalizing constant which
ensures that the posterior is a valid probability distribution.

40

A Probabilistic Approach

One last assumption...

Assuming that all values for w are equally likely, p(w|X, σ)
becomes constant.

41

A Probabilistic Approach

If both p(w|X, σ) and p(Y|X, σ) are treated as constants, then
we only need to worry about the likelihood function
p(Y|X,w, σ).

42

A Probabilistic Approach

Examining the likelihood function from this perspective
reveals the connection to our previous solution for
determining optimal w:

p(Y|X,w, σ) = − n√
2πσ2

exp
(
− 1

2σ2

n∑
i=1

(h(xi;w)− yi)2
)
.

43

A Probabilistic Approach

Therefore, maximizing the likelihood p(Y|X,w, σ) is equivalent
to minimizing the sum of squares loss function.

In practice, we would use the negative log of the likelihood
function since it is monotonically decreasing.

44

The Normal Equations

You may recall another approach to least squares solutions
when studying Linear Algebra.

Recall the normal equations ATAx = ATb.

45

The Normal Equations

These are derived by first projecting the observed data points
b on to the column space of A and solving

Ax = b̂,

where b̂ = projColAb.

46

The Normal Equations

The vector b− b̂ is orthogonal to ColA, so the product

AT(b− b̂)

should be 0.

47

The Normal Equations

Figure 4: The projection of b onto ColA. 48

The Normal Equations

Rewriting this yields

AT(b− Ax) = 0
ATb− ATAx = 0.

Thus, each least-squares solution of Ax = b satisfies

ATAx = ATb.

49

The Normal Equations

To adapt this with our problem, we’ll need to change the
notation a bit:

XTXβ = XTy

50

The Normal Equations

The design matrix X represents the the features of our data
points:

X =


x(0)0 x(0)1
x(1)0 x(1)1... ...
x(n)0 x(n)1

 .

51

The Normal Equations

We are solving for our parameter vector

β =

[
β0
β1

]
.

52

The Normal Equations

Finally, we solve for the parameter vector β:

β = (XTX)−1XTy.

53

The Normal Equations

There is way to derive the normal equations from a
probabilistic perspective starting with our likelihood function

p(Y|X,w, σ) = − n√
2πσ2

exp
(
− 1

2σ2

n∑
i=1

(h(xi;w)− yi)2
)
.

54

The Normal Equations

Taking the natural log of this function yields

− 1
2σ2

n∑
i=1

(h(xi;w)− yi)2 −
n
2 ln(σ2)− n

2 ln(2π).

55

The Normal Equations

We have established that maximizing the likelihood is
equivalent to minimizing the sum-of-squares error.

Thus, we can determine the optimal parameters by finding the
critical point of the likelihood function with respect to w.

56

The Normal Equations

First, take the gradient of the log likelihood function:

∇ lnp(Y|X,w, σ) =
n∑
i=1

(wTxi − yi)xTi

= wT
n∑
i=1

xixTi −
n∑
i=1

yixTi

57

The Normal Equations

Notice that
∑n

i=1 xixTi is simply matrix multiplication, so if we
write

X =

xT1...
xTn

 ,

58

The Normal Equations

then
∑n

i=1 xixTi = XTX,
∑n

i=1 yixTi = YTX, and

59

The Normal Equations

∇ lnp(Y|X,w, σ) = wTXTX− YTX.

60

The Normal Equations

The critical point is when ∇ lnp(Y|X,w, σ) = 0. Solving for w
yields

w = (XTX)−1XTY.

61

Fitting Polynomials

Not every dataset can be modeled using a simple line.

Many datasets follow a curved model which can be estimated
using a polynomial function.

62

Fitting Polynomials

Figure 5: Data generated from a sin function (red). 63

Fitting Polynomials

Using a linear model will not fit the data generated from a
nonlinear function.

What if we did not know that the data was generated using a
sin function?

64

Fitting Polynomials

We can make our model more expressive by modifying the
original input vectors using different degrees of polynomials.

Starting with x3.

65

Fitting Polynomials

Figure 6: Fitting the data by raising the input to the power of 3. 66

Fitting Polynomials

This may have fit differently if the data was centered at x = 0.

Solution: add more degrees of freedom so that the model can
fit more closely to the original.

67

Fitting Polynomials

The original input can be scaled up to any degree of
polynomial.

X =


x1 x21 · · · xm1
x2 x22 · · · xm2...
xn x2n · · · xmn


68

Fitting Polynomials

Figure 7: Fitting a third-degree polynomial to the data. 69

Linear Basis Function Models

We now consider creating a model that transforms the
original input using one or more nonlinear functions.

This type of model is called a linear basis function model.

70

Linear Basis Function Models

Polynomial models are simply a specific implementation of
linear basis function models.

Instead of using a linear combination of the inputs, we use a
linear combination of basis functions.

Each basis function transforms the original input vectors x.

71

Linear Basis Function Models

The model is then represented as

h(x;w) =
m∑
j=1

wjϕj(x)

72

Linear Basis Function Models

Common basis functions are the sigmoid, Gaussian, or
exponential function.

If we choose the sin function as a basis function, we can more
closely fit our dataset using the least squares approach.

73

Fitting Polynomials

Figure 8: Fitting a sin function to the data. 74

