CSE 6363 - Machine Learning

1

Logistic Regression

Alex Dillhoff

University of Texas at Arlington

With linear regression, we fit a model to the data.

This allowed us to make predictions about the observations paired with the input features.

In the regression example, both the inputs and outputs were continuous values.

We now turn to the classification task: we want to classify some input vector as being a part of 1 of K distinct classes.

In the binary case, the target variable takes on either a 0 or 1.

For *K >* 2, we use a *K*-dimensional vector that has as 1 corresponding to the class.

Classification

Given the classes

- car
- truck
- person

A target vector for person is $\hat{\mathsf{y}} = [0,0,1]^T$

Again, we start with a linear model $y = f(x; w)$.

The output should be some discrete value:

- \cdot 0 and 1
- \cdot -1 and $+1$
- \cdot 1, 2, 3, ... ???

The logistic model is often approached by introducing the odds of an event occurring:

$$
\frac{p}{1-p},
$$

where *p* is the probability of the event happening.

Our input *p* represents the probability in range (0*,* 1) which we want to map to the real number space.

To approximate this, we apply the natural logarithm to the odds.

Linear Models (again)

The logistic model assumes a linear relationship between the linear model w *^T*x and the logit function

$$
logit(p) = \ln \frac{p}{1-p}.
$$

This function maps a value in range (0*,* 1) to the space of real numbers.

Under this assumption, we can write

 $logit(p) = w^T x$.

This assumption is reasonable because we ultimately want to predict the probability that an event occurs.

The output should then be in the range of (0*,* 1).

If the logit function produces output in the range of real numbers, as does our linear model w *^T*x, then we ultimately want a function that maps from the range of real numbers to to (0*,* 1).

We can achieve this using the **inverse** of the logit function.

The model should produce some likelihood of whether or not the sample belongs to class 1 or 2.

This is commonly accomplished with the **logistic sigmoid** function.

$$
\sigma(z)=\frac{1}{1+\exp(-z)},
$$

where $z = \mathbf{w}^T \mathbf{x}$.

Logistic Sigmoid Function

Figure 1: Plot of the logistic sigmoid function.

The logistic sigmoid function also has a convenient derivative, which is useful when solving for the model parameters via gradient descent.

$$
\frac{d}{dx} = \sigma(x)(1 - \sigma(x))
$$

Linear Models (again)

Applying this function to the raw output of our model yields the form

$$
f(\mathbf{x}; \mathbf{w}) = h(\mathbf{w}^T \mathbf{x}),
$$

where *h* is our choice of activation function.

We begin with binary classification.

Come up with the parameters of a line that separate the data.

We will assume linearly separable data.

Binary Classification

Figure 2: Two groups of data separated into the red and blue class. 17

This toy example is chosen to focus on the core concepts.

We could easily come up with parameters that draw a line between them.

One example is the line $v = x$.

Binary Classification

Figure 3: The line $y = x$ separates the data perfectly.

The parameter vector **w** is orthogonal to the decision boundary.

The model output is 0 when **x** lies on the line.

Binary Classification

Figure 4: Geometry of the decision boundary in 2D. Source: Bishop ²¹

In the binary case, we are approximating $p(C_1|\mathbf{x}) = \sigma(\mathbf{w}^T\mathbf{x})$.

 $\mathsf{Then} \ p(C_2|\mathsf{x}) = 1 - p(C_1|\mathsf{x}).$

Qualitatively, we can see that our dataset is perfectly classified.

How can we measure this quantitatively?

Measuring Performance

How can we measure this quantitatively?

A common choice for binary classification is to use *L*1 loss:

$$
L_1=\sum_i|\hat{y}_i-y_i|,
$$

where \hat{y}_i is the ground truth and y_i is the model output for input x*ⁱ* .

To fit our model to the data, we can take a maximum likelihood approach.

This will reveal some very useful functions when dealing with any classification problem.

Let $y_i \in \{0, 1\}$ be the target for binary classification and $\hat{v}_i \in (0, 1)$ be the output of a logistic regression model.

The likelihood function is

$$
p(\mathbf{y}|\mathbf{w}) = \prod_{i=1}^n \hat{y}_i^{y_i} (1 - \hat{y}_i)^{1-y_i}.
$$

Since the output is restricted within the range (0*,* 1), the model will never produce 0 or 1.

If the target $y_i = 0$, then we can evaluate the subexpression 1 *−* ˆ*yⁱ* . In this case, the likelihood increases as ˆ*yⁱ* decreases.

If the target $y_i = 1$, then we evaluate the subexpression \hat{y}_i .

When fitting this model, we want to define an error measure based on the above function.

This is done by taking the negative logarithm of *p*(y*|*w).

$$
E(\mathbf{w}) = -\ln p(\mathbf{y}|\mathbf{w}) = -\sum_{i=1}^{n} y_i \ln \hat{y}_i + (1 - y_i) \ln(1 - \hat{y}_i)
$$

Maximum Likelihood

$$
E(\mathbf{w}) = -\ln p(\mathbf{y}|\mathbf{w}) = -\sum_{i=1}^{n} y_i \ln \hat{y}_i + (1 - y_i) \ln(1 - \hat{y}_i)
$$

This function is commonly referred to as the cross-entropy function.

If we use this as an objective function for gradient descent with the understanding that $\hat{ \textbf{y}}_i = \sigma(\textbf{w}^{\intercal}\textbf{x})$, then the gradient of the error function is

$$
\nabla E(\mathbf{w}) = \sum_{i=1}^n (\hat{y}_i - y_i) \mathbf{x}_i.
$$

In multiclass logistic regression, we are dealing with target values that can take on one of *K* values $y \in \{1, 2, \ldots, K\}$.

If our goal is to model the distribution over *K* classes, a multinomial distribution is the obvious choice.

Let $p(y|\mathbf{x}; \theta)$ be a distribution over *K* numbers w_1, \ldots, w_K that sum to 1.

Our parameterized model cannot be represented exactly by a multinomial distribution, so we will derive it so that it satisfies the same constraints.

We can start by introducing *K* parameter vectors $\mathsf{w}_1, \ldots, \mathsf{w}_K \in \mathbb{R}^d$, where d is the number of input features.

Then each vector $\boldsymbol{\mathsf{w}}_{k}^{\intercal}$ $\frac{1}{k}$ **x** represents $p(C_k|\mathbf{x}; \mathbf{w}_k)$.

We need to *squash* each w *T k* x so that the output sums to 1.

This is accomplished via the softmax function

Multiple Classes

$$
p(C_k|\mathbf{x}) = \frac{\exp(\mathbf{w}_k^T \mathbf{x})}{\sum_j \exp(\mathbf{w}_j^T \mathbf{x})}.
$$

Multiple Classes

For *K* classes, the output vector looks like

$$
\hat{\textbf{y}} = \begin{bmatrix} \frac{\exp(\textbf{w}_{1}^{T}\textbf{x})}{\sum_{j}\exp(\textbf{w}_{j}^{T}\textbf{x})} \\ \frac{\exp(\textbf{w}_{2}^{T}\textbf{x})}{\sum_{j}\exp(\textbf{w}_{j}^{T}\textbf{x})} \\ \vdots \\ \frac{\exp(\textbf{w}_{k}^{T}\textbf{x})}{\sum_{j}\exp(\textbf{w}_{j}^{T}\textbf{x})} \end{bmatrix}
$$

The target vector for each sample is $\mathbf{y}_i \in \mathbb{R}^k$. Likewise, the output vector $\hat{\mathbf{y}}_i$ also has *k* elements.

The maximum likelihood function for the multiclass setting is given by

$$
p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^{n} \prod_{k=1}^{K} p(C_k|\mathbf{x}_i)^{y_{ik}} = \prod_{i=1}^{n} \prod_{k=1}^{K} \hat{y}_{ik}^{y_{ik}}.
$$

As with the binary case, we can take the negative logarithm of this function to produce an error function.

$$
E(W) = - \ln p(Y|W) = - \sum_{i=1}^{n} \sum_{k=1}^{K} y_{ik} \ln \hat{y}_{ik}
$$

This is the **cross-entropy** function for multiclass classification.

The gradient of this function is given as

$$
\nabla_{\mathbf{w}_j} E(\mathbf{W}) = \sum_{i=1}^n (\hat{y}_{ij} - y_{ij}) \mathbf{x}_i.
$$

Summary

- Logistic regression is a linear model for classification parameterized by w.
- It is a probabilistic model that uses the sigmoid function to produce a *probability*.

$$
\hat{\mathbf{y}} = \sigma(\mathbf{W}^T \mathbf{x})
$$

• The maximum likelihood function for logistic regression is given by

$$
E(\mathbf{w}) = -\ln p(\mathbf{y}|\mathbf{w}) = -\sum_{i=1}^{n} y_i \ln \hat{y}_i + (1 - y_i) \ln(1 - \hat{y}_i)
$$

 1.1

Summary

• The gradient of the maximum likelihood function is given by

$$
\nabla E(\mathbf{w}) = \sum_{i=1}^n (\hat{y}_i - y_i) \mathbf{x}_i.
$$

• The final update rule for gradient descent is given by

$$
w \leftarrow w - \alpha E(w).
$$

Summary

- Multiclass logistic regression uses the softmax function to produce a probability distribution over *K* classes.
- The maximum likelihood function for multiclass logistic regression is given by

$$
E(W) = -\ln p(Y|W) = -\sum_{i=1}^{n} \sum_{k=1}^{K} y_{ik} \ln \hat{y}_{ik}
$$

• The gradient of the maximum likelihood function is given by

$$
\nabla_{\mathsf{w}_j} E(\mathsf{W}) = \sum^{n} (\hat{y}_{ij} - y_{ij}) \mathsf{x}_i.
$$

• The final update rule for gradient descent is given by

$$
\mathbf{w}_j \leftarrow \mathbf{w}_j - \alpha \nabla_{\mathbf{w}_j} E(\mathbf{W}).
$$

• The update rule is the same for both binary and multiclass logistic regression.