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Classification

With linear regression, we fit a model to the data.

This allowed us to make predictions about the observations
paired with the input features.
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Classification

In the regression example, both the inputs and outputs were
continuous values.

We now turn to the classification task: we want to classify
some input vector as being a part of 1 of K distinct classes.
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Classification

In the binary case, the target variable takes on either a 0 or 1.

For K > 2, we use a K-dimensional vector that has as 1
corresponding to the class.
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Classification

Given the classes

• car
• truck
• person

A target vector for person is ŷ = [0, 0, 1]T
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Linear Models (again)

Again, we start with a linear model y = f(x;w).

The output should be some discrete value:

• 0 and 1
• -1 and +1
• 1, 2, 3, ... ???
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Linear Models (again)

The logistic model is often approached by introducing the
odds of an event occurring:

p
1− p ,

where p is the probability of the event happening.
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Linear Models (again)

Our input p represents the probability in range (0, 1) which we
want to map to the real number space.

To approximate this, we apply the natural logarithm to the
odds.
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Linear Models (again)

The logistic model assumes a linear relationship between the
linear model wTx and the logit function

logit(p) = ln
p

1− p .

This function maps a value in range (0, 1) to the space of real
numbers.

9



Linear Models (again)

Under this assumption, we can write

logit(p) = wTx.

This assumption is reasonable because we ultimately want to
predict the probability that an event occurs.

The output should then be in the range of (0, 1).
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Linear Models (again)

If the logit function produces output in the range of real
numbers, as does our linear model wTx, then we ultimately
want a function that maps from the range of real numbers to
to (0, 1).

We can achieve this using the inverse of the logit function.
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Linear Models (again)

The model should produce some likelihood of whether or not
the sample belongs to class 1 or 2.

This is commonly accomplished with the logistic sigmoid
function.

σ(z) = 1
1+ exp(−z) ,

where z = wTx.
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Logistic Sigmoid Function

Figure 1: Plot of the logistic sigmoid function.
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Logistic Sigmoid Function

The logistic sigmoid function also has a convenient derivative,
which is useful when solving for the model parameters via
gradient descent.

d
dx = σ(x)(1− σ(x))
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Linear Models (again)

Applying this function to the raw output of our model yields
the form

f(x;w) = h(wTx),

where h is our choice of activation function.
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Binary Classification

We begin with binary classification.

Come up with the parameters of a line that separate the data.

We will assume linearly separable data.
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Binary Classification

Figure 2: Two groups of data separated into the red and blue class. 17



Binary Classification

This toy example is chosen to focus on the core concepts.

We could easily come up with parameters that draw a line
between them.

One example is the line y = x.
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Binary Classification

Figure 3: The line y = x separates the data perfectly. 19



Binary Classification

The parameter vector w is orthogonal to the decision
boundary.

The model output is 0 when x lies on the line.
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Binary Classification

Figure 4: Geometry of the decision boundary in 2D. Source: Bishop 21



Binary Classification

In the binary case, we are approximating p(C1|x) = σ(wTx).

Then p(C2|x) = 1− p(C1|x).
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Measuring Performance

Qualitatively, we can see that our dataset is perfectly
classified.

How can we measure this quantitatively?
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Measuring Performance

How can we measure this quantitatively?

A common choice for binary classification is to use L1 loss:

L1 =
∑
i

|ŷi − yi|,

where ŷi is the ground truth and yi is the model output for
input xi.
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Maximum Likelihood

To fit our model to the data, we can take a maximum
likelihood approach.

This will reveal some very useful functions when dealing with
any classification problem.
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Maximum Likelihood

Let yi ∈ {0, 1} be the target for binary classification and
ŷi ∈ (0, 1) be the output of a logistic regression model.

The likelihood function is

p(y|w) =
n∏
i=1

ŷyii (1− ŷi)1−yi.
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Maximum Likelihood

Since the output is restricted within the range (0, 1), the
model will never produce 0 or 1.

If the target yi = 0, then we can evaluate the subexpression
1− ŷi. In this case, the likelihood increases as ŷi decreases.

If the target yi = 1, then we evaluate the subexpression ŷi.
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Maximum Likelihood

When fitting this model, we want to define an error measure
based on the above function.

This is done by taking the negative logarithm of p(y|w).

E(w) = − lnp(y|w) = −
n∑
i=1

yi ln ŷi + (1− yi) ln(1− ŷi)

28



Maximum Likelihood

E(w) = − lnp(y|w) = −
n∑
i=1

yi ln ŷi + (1− yi) ln(1− ŷi)

This function is commonly referred to as the cross-entropy
function.
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Maximum Likelihood

If we use this as an objective function for gradient descent
with the understanding that ŷi = σ(wTx), then the gradient of
the error function is

∇E(w) =
n∑
i=1

(ŷi − yi)xi.
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Multiple Classes

In multiclass logistic regression, we are dealing with target
values that can take on one of K values y ∈ {1, 2, . . . , K}.

If our goal is to model the distribution over K classes, a
multinomial distribution is the obvious choice.
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Multiple Classes

Let p(y|x; θ) be a distribution over K numbers w1, . . . ,wK that
sum to 1.

Our parameterized model cannot be represented exactly by a
multinomial distribution, so we will derive it so that it
satisfies the same constraints.
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Multiple Classes

We can start by introducing K parameter vectors
w1, . . . ,wK ∈ Rd, where d is the number of input features.

Then each vector wT
kx represents p(Ck|x;wk).
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Multiple Classes

We need to squash each wT
kx so that the output sums to 1.

This is accomplished via the softmax function
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Multiple Classes

p(Ck|x) =
exp(wT

kx)∑
j exp(wT

j x)
.
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Multiple Classes

For K classes, the output vector looks like

ŷ =



exp(wT
1x)∑

j exp(wT
j x)

exp(wT
2x)∑

j exp(wT
j x)...

exp(wT
Kx)∑

j exp(wT
j x)
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Multiple Classes

The target vector for each sample is yi ∈ Rk. Likewise, the

output vector ŷi also has k elements.
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Multiple Classes

The maximum likelihood function for the multiclass setting is
given by

p(Y|W) =
n∏
i=1

K∏
k=1

p(Ck|xi)yik =
n∏
i=1

K∏
k=1

ŷyikik .
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Multiple Classes

As with the binary case, we can take the negative logarithm of
this function to produce an error function.

E(W) = − lnp(Y|W) = −
∑n

i=1
∑K

k=1 yik ln ŷik

This is the cross-entropy function for multiclass classification.
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Multiple Classes

The gradient of this function is given as

∇wjE(W) =
n∑
i=1

(ŷij − yij)xi.

40



Summary

• Logistic regression is a linear model for classification
parameterized by w.

• It is a probabilistic model that uses the sigmoid function
to produce a probability.

ŷ = σ(wTx)

• The maximum likelihood function for logistic regression
is given by

E(w) = − lnp(y|w) = −
n∑
i=1

yi ln ŷi + (1− yi) ln(1− ŷi)
41



Summary

• The gradient of the maximum likelihood function is given
by

∇E(w) =
n∑
i=1

(ŷi − yi)xi.

• The final update rule for gradient descent is given by

w← w− αE(w).
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Summary

• Multiclass logistic regression uses the softmax function
to produce a probability distribution over K classes.

• The maximum likelihood function for multiclass logistic
regression is given by

E(W) = − lnp(Y|W) = −
n∑
i=1

K∑
k=1

yik ln ŷik

• The gradient of the maximum likelihood function is given
by

∇wjE(W) =
n∑
i=1

(ŷij − yij)xi. 43



Summary

• The final update rule for gradient descent is given by

wj ← wj − α∇wjE(W).

• The update rule is the same for both binary and
multiclass logistic regression.
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