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What is covered?

1. Definition of naive Bayes Classifier

2. Parameter Estimates via MLE

3. MNIST Example



Naive Bayes Classifier

We studied classification with a generative model when looking at
Linear Discriminant Analysis.

For more complex data, the number of parameters required can be
prohibitive.
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Naive Bayes Classifier

If we use SVD as the solver for LDA, the covariance matrix does
not need to be computed.

Today, we will look at an alternative classifier that does not require
such a large number of parameters.



The MNIST Dataset

To motivate naive Bayes classifiers, let’s look at slightly more
complex data.

The MNIST dataset was one of the standard benchmarks for
computer vision classification algorithms for a long time.

It remains useful for educational purposes.



The MNIST Dataset

Figure: 64 samples from the MNIST dataset.



The MNIST Dataset

The dataset consists of 60,000 training images and 10,000 testing
images of size 28× 28.

These images depict handwritten digits.

The original goal of this dataset was to train systems that could
correctly classify handwritten digits for the post office.



The MNIST Dataset

For simplicity in our model formulation, we will work with binary
version of the images.

This implies that each data sample has 784 binary features.



The MNIST Dataset

We will use the naive Bayes classifier to make an image
classification model which predicts the class of digit given a new
image.

Each image will be represented by a vector x ∈ R784.



The MNIST Dataset

Modeling p(x|Ck) with a multinomial distribution would require
10784 − 1 parameters since there are 10 classes and 784 features.

With the naive assumption that the features are independent
conditioned on the class, the number model parameters becomes
10× 784.



Naive Bayes

A naive Bayes classifier makes the assumption that the features of
the data are independent.

p(x|Ck ,θ) =
D∏

d=1

p(xi |Ck , θdk),

where θdk are the parameters for the class conditional density for
class k and feature d .



Naive Bayes

Using the MNIST dataset, θk ∈ R784.

The posterior distribution is then

p(Ck |x,θ) =
p(Ck |π)

∏D
i=1 p(xi |Ck , θdk)∑

k ′ p(Ck ′|π)
∏D

i=1 p(xi |Ck ′, θdk ′)
.



Naive Bayes

If we convert the input images to binary, the class conditional
density p(x|Ck ,θ) takes on the Bernoulli pdf.

p(x|Ck ,θ) =
D∏
i=1

Ber(xi |θdk)



Naive Bayes

The parameter θdk is the probability that the feature xi = 1 given
class Ck .

As seen before with MLE, this is very simple to estimate empirically.



Maximum Likelihood Estimation

Fitting a naive Bayes classifier is relatively simple using MLE.

The likelihood is given by

p(X, y|θ) =
N∏

n=1

M(yn|π)
D∏

d=1

K∏
k=1

p(xnd |θdk)1(yn=k).



Maximum Likelihood Estimation

To derive the estimators, we first take the log of the likelihood:

ln p(X, y|θ) =

[
N∑

n=1

K∑
k=1

1(yn = k) lnπk

]

+
K∑

k=1

D∑
d=1

[ ∑
n:yn=k

ln p(xnd |θdk)

]
.



Maximum Likelihood Estimation

We have a term for the the multinomial and terms for the
class-feature parameters.

As with previous models that use a multinomial form, the
parameter estimate for the first term is computed as

π̂k =
Nk

N
.



Maximum Likelihood Estimation

The features used in our data are binary, so the parameter estimate
for each θ̂dk follows the Bernoulli distribution:

θ̂dk =
Ndk

Nk
.



Making a Decision

Given parameters θ, how can we classify a given data sample?

argmax
k

p(y = k)
∏
i

p(xi |y = k)
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Connection to Logistic Regression

Consider some data with discrete features having one of K states,
then xdk = 1(xd = k).

The class conditional density, in this case, follows a multinomial
distribution:

p(y = c |x, θ) =
D∏

d=1

K∏
k=1

θxdkdck



Connection to Logistic Regression

We can see a connection between naive Bayes and logistic
regression when we evaluate the posterior over classes:

p(y = c |x, θ) = p(y)p(x|y , θ)
p(x)

=
πc

∏
d

∏
k θ

xdk
dck∑

c ′ πc ′
∏

d

∏
k θ

xdk
dc ′k

=
exp[log πc +

∑
d

∑
k xdk log θdck ]∑

c ′ exp[log πc ′ +
∑

d

∑
k xdk log θdc ′k ]

.



Connection to Logistic Regression

This has the same form as the softmax function:

p(y = c |x, θ) = eβ
T
c x+γc∑C

c ′=1 e
βT
c′x+γc′



Demo

Demo: naive Bayes with MNIST


