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Probability Theory

What is probability theory?

A consistent framework for the quantification and manipulation of
uncertainty.
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Probability Theory

We will cover some probabilistic methods for machine learning in this
course.

A brief review of probability theory and some fundamental distributions
wouldn’t hurt!
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Example: Mixing Cookies

Let’s start with an example...

There are two cookie jars

• A blue jar with 8 oatmeal raisin cookies
• A red jar with 10 chocolate chip cookies
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Example: Mixing Cookies

However, some monsters took 2 chocolate chip cookies and put them in
the blue jar

and placed 1 oatmeal raisin cookie in the red jar.
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Example: Mixing Cookies

The blue jar now has 2 chocolate chip and 7 oatmeal raisin.

The red jar has 8 chocolate chip and 1 oatmeal raisin.
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Example: Mixing Cookies

Let’s further say that we happen to pick the red jar 80% of the time and
the blue jar 20% of the time.

We can start to formulate about these events via probability by assigning
these actions to random variables.
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Example: Mixing Cookies

We have two types of things: cookies and jars. Let’s assign them to
variables.

• J - The type of jar, either blue b or red r.
• C - The type of cookie, either oatmeal o or chocolate chip c.
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Example: Mixing Cookies

We can present the probabilities of picking each type of jar using a
functional notation:

• p(J = b) = 0.2
• p(J = r) = 0.8

Notice that their sum is 1. This makes sense considering they are the only
2 jars in our problem.
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Example: Mixing Cookies

We can also define the probability of picking each cookie.

• p(C = o)
• p(C = c)

However, this probability is based on which jar is picked.
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Example: Mixing Cookies

We can also define the probability of picking each cookie.

Chocolate Chip Oatmeal Raisin

Blue Jar 2
9 = 0.222 7

9 = 0.778

Red Jar 8
9 = 0.889 1

9 = 0.111
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Example: Mixing Cookies

Given these quantities, we can ask slightly more complication questions.

What is the probability that I will select the red jar AND take a chocolate
chip cookie?

This is expressed as a joint probability distribution, p(J = r, C = c).
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Example: Mixing Cookies

p(J = r, C = c) is defined based on

• the prior probability of picking the red jar,
• the conditional probability of picking the chocolate chip cookie
conditioned on the red jar being picked.

Mathematically, p(J = j, C = c) = p(C = c|J = r)p(J = r).

13



Example: Mixing Cookies

p(J = j, C = c) = p(C = c|J = r)p(J = r)

is also known as the product rule.

14



Example: Mixing Cookies

We have all of the quantities we need to answer this.

p(J = r) = 0.8 and p(C = c|J = r) = 0.889

Thus,
p(J = r, C = c) = 0.8 ∗ 0.889 = 0.711
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Example: Mixing Cookies

If we knew nothing about the contents of the jar or the prior probabilities
of selecting a specific jar, we could measure this probability empirically.
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Example: Mixing Cookies

Conduct N trials of taking a cookie from one of the jars, recording it, and
placing it back in the same jar.

Count the number of times we select a red jar AND a chocolate chip cookie.
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Example: Mixing Cookies

If we wanted to measure the conditional probability p(C = c|J = r)...

Count the number of times a chocolate chip cookie is taken (and replaced)
from the red jar and divide by N.
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Example: Mixing Cookies

Calculating all joint probabilities produces a joint probability table:

Chocolate Chip Oatmeal Raisin

Red Jar 0.711 0.089

Blue Jar 0.044 0.156
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Example: Mixing Cookies

Note that the sum of the sum of rows is equal to 1.

Likewise, the sum of the sum of columns is equal to 1.
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Example: Mixing Cookies

The sum of the each column for a given row adds up to the prior
probability of selecting a jar.

The sum of each row for a given column is the prior probability of
selecting a cookie.

These are called marginal probabilities.
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Example: Mixing Cookies

In general, the marginal probability can be computed by summing out the
joint variables:

p(xi) =
∑
j

p(xi, yj)
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Chain Rule

What if we want the joint probability over k variables?

p(a1, · · · ,ak)
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Chain Rule

What if we want the joint probability over k variables?

p(a1, · · · ,ak) = p(a1)p(a2|a1) · · ·p(ak|a1, · · · ,ak−1)
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Bayes’ Rule

Notationally, p(X, Y) and p(Y, X) would be written slightly differently, but
they are equal.

Setting them equal to each other is the basis of the derivation of Bayes’
rule:

p(X, Y) = p(Y, X)
p(X|Y)p(Y) = p(Y|X)p(X)

p(X|Y) = p(Y|X)p(X)
p(Y)
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Bayes’ Rule

p(X|Y) = p(Y|X)p(X)
p(Y)

This will come in handy in for many probabilistic methods later on.
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Bayes’ Rule

In the context of Bayes’ rule, p(X|Y) is referred to as the posterior
probability of event X conditioned on the fact that we know event Y has
occurred.

p(X) is the prior probability of event X in the absence of any additional
evidence.
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Bayes’ Rule Example: COVID-19 Testing

Murphy presents an excellent example of understanding probabilities via
Bayes’ rule.

• H is the infected state (1 for yes, 0 for no)
• Y is the test event (1 for positive, 0 for negative)

We want to find p(H = h|Y = y): the probability of the state of infection
given a test result.
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Bayes’ Rule Example: COVID-19 Testing

The sensitivity is p(Y = 1|H = 1).

The probability of testing positive conditioned on actually being infected.
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Bayes’ Rule Example: COVID-19 Testing

The false negative rate is 1− p(Y = 1|H = 1).

Also written as p(Y = 0|H = 1).
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Bayes’ Rule Example: COVID-19 Testing

The specificity is defined as p(Y = 0|H = 0).

The probability of testing negative conditioned on no infection.
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Bayes’ Rule Example: COVID-19 Testing

The false positive rate is defined as p(Y = 1|H = 0).

The probability of testing positive conditioned on no infection.

Also defined as 1− p(Y = 0|H = 0).
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Bayes’ Rule Example: COVID-19 Testing

Now that we have defined the likelihoods, we need the priors.

The prevalence of the disease in your area is p(H = 1).
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Bayes’ Rule Example: COVID-19 Testing

Let’s apply some values to these quantities. Suppose the likelihoods
follow the table below.

Y = 0 Y = 1

H = 0 0.975 0.025

H = 1 0.125 0.875

Additionally, we’ll suppose the prevalence of infection p(H = 1) = 0.05.
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Bayes’ Rule Example: COVID-19 Testing

If you test positive, what is the probability that you are actually infected
(true positive rate)?

p(H = 1|Y = 1) = p(Y = 1|H = 1)p(H = 1)∑
h p(Y = 1|H = h)p(H = h)

=
0.875× 0.05

0.875× 0.05+ 0.025× 0.95
= 0.648

There is a 64.8% chance you are infected.
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Bayes’ Rule Example: COVID-19 Testing

If you test negative, what is the probability that you are actually infected?

Using the same data, we can calculate p(H = 0|Y = 1) = .0067, or 0.67%.
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Independence

Two variables are independent, then

p(X, Y) = p(X)p(Y)

If two variables are conditionally independent given a third event, then

p(X, Y|Z) = P(X|Z)P(Y|Z)
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Continuous Variables

In the introductory example, the events took on discrete values.

Most of the problems we will see in this course involve continuous values.

38



Continuous Variables

Consider a small differential of a random variable x, δx.

The probability density is p(x).
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Continuous Variables

Figure 1: PDF p(x) and CDF P(x). Source: Bishop 40



Continuous Variables

With the small differential δx, the probability that x lies on some interval
(a,b) is given by

p(a ≤ x ≤ b) =
∫ b

a
p(x)dx
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Continuous Variables

The probability density must sum to 1 and cannot take a negative value.

p(x) ≥ 0∫ ∞

−∞
p(x)dx = 1

However, it is possible to have a value greater than 1 as long as the
integrals over any interval are <= 1.
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Continuous Variables

The cumulative distribution function P(x) is the probability that x lies in
the interval (−∞, z)

P(z) =
∫ z

∞
p(x)dx.

Note that the derivative of the cdf is equal to the pdf.
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Continuous Variables

The product rule for continuous probability distributions takes on the
same form as that of discrete distributions.

The sum rule is written in terms of integration:

p(x) =
∫

p(x, y)dy.
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Moments of Distributions

A moment of a function describes a quantitative measurement related to
its graph.

With respect to probability densities, the kth moment of p(x) is defined as
E[xk].

The first moment is the mean of the distribution, the second moment is
the variance, and the third moment is the skewness.
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Expectation

The expectation of a function is the mean under a proability distribution
p(x)

E[f] =
∑
x

p(x)f(x) and

E[f] =
∫

p(x)f(x)dx,
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Expectation

Given a fair d6, for which each value is equally likely, p(x) = 1
6 , the

expectation is

E[f] =
∑
x

p(x)f(x)

=
1
6(1+ 2+ 3+ 4+ 5+ 6)

= 3.5
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Expectation

Figure 2: Expectation of rolling a d6 over 1800 trials converges to 3.5. Source:
Seeing Theory 48

https://seeing-theory.brown.edu/


Variance

The variance of a function f(x) under a probability distribution p(x)
measures how much variability is in f(x) around the expected value E[f(x)]

var[f] = E[(f(x)− E[f(x)])2]
= E[f(x)2]− E[f(x)]2.
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Variance

If we have a stack of 10 cards with values 1-10 and draw 1 (with
replacement) over N trials, the variance is

var[f] = E[f(x)2]− E[f(x)]2

= 38.5− 30.25
= 8.25
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Variance

Figure 3: Variance of drawing a card (1-10) over N trials converges to 8.25. Source:
Seeing Theory
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Covariance

The covariance of two random variables x and y provides a measure of
dependence between them.

cov[x, y] = Ex,y[{x− E[x]}{yT − E[yT]}]
= Ex,y[xyT]− E[x]E[yT].

52



Covariance

Figure 4: Plot of variables for with the covariance is negative. Source: Wikipedia
53



Covariance

Figure 5: Plot of variables for with the covariance is approximately 0. Source:
Wikipedia
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Covariance

Figure 6: Plot of variables for with the covariance is positive. Source: Wikipedia 55



Correlation

The correlation between two random variables x and y relates to their
covariance, but it is normalized to lie between -1 and 1.

corr[x, y] = cov[x, y]√
var[x]var[y]
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Correlation

The correlation between two variables will equal 1 if there is a linear
relationship between them.

We can then view the correlation as providing a measurement of linearity.
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Correlation

Figure 7: Sets of points with their correlation coefficients. Source: Wikipedia 58



Limits of Moments

When possible, it is always better to visualize the data.

An example of this is the Anscombosaurus, derived from the Anscombe’s
quartet.

The quartet consists of four datasets that have nearly identical summary
statistics but are visually distinct.

A modern version, called the Datasaurus Dozen, consists of 12 datasets
that have the same summary statistics but are visually distinct.
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Anscombosaurus

Figure 8: The Anscombosaurus. Source: Datasaurus Dozen 60

https://www.autodeskresearch.com/publications/samestats

