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What is covered?

1. Overfitting
2. Least-Squares Regularization
3. Evaluation on polynomial model
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Overfitting

What happens when the complexity of our model fits the data too well?

A highly parameterized model may seem desirable, but can lead to worse
performance than a simple one.
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Overfitting

Figure 1: A polynomial of degree 11 (blue) fit to data generated following the red curve. 4



Overfitting

The model with more parameters is able to fit some the noisy data slightly
better.

Does this necessarily mean it will perform better on new samples?

5



Overfitting

No, it will usually perform worse.

This is referred to as overfitting.
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Overfitting

Models with more parameters have higher capacity to fit the complexity of
a data.

However, much of that complexity may just be simple noise.

This the model will not generalize well to unseen data.

7



Overfitting

Overfitting can be detected in many ways.

When using online learning, tracking the training loss versus the validation
loss reveals when the model begins to overfit.
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Overfitting

Figure 2: The validation loss (red) diverges as the training loss (blue) continues to decrease. Source: Wikipedia 9



Overfitting

If using a different solver, you can inspect the weights of the model.

Left unchecked, weights of a highly parameterized model usually take on
large values as the loss is minimized.
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Overfitting

Figure 3: The mean of the absolute value of the weights for the blue model is 11.1. 11



Regularization

The solution to this problem is regularization.

Regularization comes in many forms, and we will cover a few in this course.
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Regularization

The most common form is to penalize the weights from taking a high
value.

This can be done by adding a penalization term to the loss function, which
is then minimized by the optimizer.
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Regularization

A simple term for the error is that of L2 regularization.

E(w) = 1
2 ||w||

2 =
1
2w

Tw
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Regularization

Added to the sum-of-squares error for least squares, the final loss
becomes

J(w) = 1
2

n∑
i=1

(h(xi;w)− yi)2 +
1
2w

Tw.
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Regularization

This choice of regularization is beneficial in that it can be optimized via
stochastic gradient descent.

Its form also allows it to be minimized in closed form via the normal
equations.
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Regularization

Taking the gradient of J(w) above with respect to 0 and solving for w yields

w = (λI+ XTX)−1XTy,

where λ is a regularization hyperparameter.
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Overfitting

Figure 4: Least squares model fit with L2 regularization (λ = 1). 18



Regularization

Inspecting the weights as before, we can see that the mean of the
absolute values of w is 0.0938.

Compared to the unregularized model with mean absolute weights of 11.1,
regularization has done its job.
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Regularization

Merely verifying that the weight values decreased is not good enough.

We expected this as the term was minimized via the loss function.
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Evaluation on Test

To see which model generalizes better, we set aside some samples from
the original dataset to use as testing.

With regularization, the model error on the test set is 1.8. Without
regularization, the model error on the test set is 2.2.
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Demo

Demo: Linear Regression
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