
DASC 5300 - Foundations of Computing
Hash Maps

Alex Dillhoff

University of Texas at Arlington

1



Hash Maps

A hash map is an abstract unordered, associative array.

It represents a mapping between a unique key and some
associated value.

2



Hash Maps

By unordered, we mean that the data is represented in no
particular ordering.

An associative array is an array consisting of key-value pairs
for which each key is unique (e.g. IDs, Addresses, etc.).

3



Hash Maps

A key in a hash map need not be a numerical value.

It can be any variable sequence of characters.

A hash function converts the sequence of character to a
numerical value which is used to determine the index.

4



Hash Maps

Image from Wikipedia - Hash table. 5

https://upload.wikimedia.org/wikipedia/commons/thumb/7/7d/Hash_table_3_1_1_0_1_0_0_SP.svg/1280px-Hash_table_3_1_1_0_1_0_0_SP.svg.png


Hash Function

Ideally, a hash function would assign every key to a unique
key.

However, the size of the array (or number of buckets) is finite.

6



Basic Implementation

To implement a basic hash map, you only need two
components:

1. An array
2. A hash function

Example: Hash Map for strings

7



Resolving Collisions

A collision occurs if multiple keys map to the same bucket.

This is more common than you might think, regardless of
array size.

8



The Birthday Paradox

A popular problem in probability theory is called The Birthday
Problem.

What is the probability that some pair of people will share the
same birthday in a set of n randomly sampled individuals?

The result is usually surprising at first.

9



The Birthday Paradox

If only 23 people are randomly sampled, there is an
approximately 50% chance that two people will share the
same birthday.

If 60 people are sampled, there is a 99.4% chance.

10



The Birthday Paradox

Image from Wikipedia - Birthday problem 11

https://en.wikipedia.org/wiki/Birthday_problem


The Birthday Paradox

To understand this, consider event A: the probability that no
two people share the same birthday out of a group of n
people.

We will let B be the probability that at least 2 people share
the same birthday in a group of n people.

12



The Birthday Paradox

P(A) is then the ratio of all possible combinations of
birthdays without repetitions where order matters to the total
number of combinations of birthdays with repetitions where
order matters.

P(A) = 365!
(365− n)!365n

13



The Birthday Paradox

The second part of the ratio represents all possible outcomes
in our experiment.

If P(A) is the probability that no two people share the same
birthday, then P(B) = 1− P(A) is the probability that at least
two people share the same birthday.

14



Resolving Collisions

How does this apply to hash maps?

With a bucket size of 1,000,000, there is a 95% chance that a
collision will occur if only 2,450 keys are hashed.

15



Resolving Collisions

There are many ways to resolve collisions. They can be
broadly grouped into one of two types:

1. Separate Chaining
2. Open Addressing

16



Separate Chaining

Solutions based on separate chaining use an additional data
structure for each entry in the array, such as a linked list.

If a collision occurs at the same index, the item is added to a
list associated with that bucket.

17



Separate Chaining

Image from Wikipedia - Hash table 18

https://en.wikipedia.org/wiki/Hash_table


Separate Chaining

There are many data structure choices for implementing
separate chaining.

The decision is usually once of memory and compute time.

Usually, the number of items that collide will be relatively
small.

19



Separate Chaining

What are the pros and cons of using each of the following for
separate chaining?

• Linked Lists
• Binary Search Trees
• Arrays

20



Separate Chaining - Linked Lists

If the data that is being stored is small, a linked list might not
be a good choice as the overhead of the next pointer will add
up.

21



Separate Chaining - Binary Search Trees

Using a Binary Search Tree has the advantage of searching
much more efficient

However, this relies on the tree being balanced. This coupled
with other operations like deletion can cause slowdowns
depending on the implementation.

22



Separate Chaining - Arrays

Searching between multiple elements in the same bucket is
linear with arrays.

When items are added or removed, the array needs to be
resized.

This requires moving elements in the case of removing an
item.

23



Separate Chaining

Example: Separate Chaining with Linked Lists

24



Open Addressing

Open addressing is arguable more common as it is much
easier to implement.

The simplest version of this is called linear probing.

25



Open Addressing - Linear Probing

If a collision occurs in linear probing, the table is linearly
scanned until the desired entry is found OR an empty entry is
found.

In the latter case, no such element exists.

26



Open Addressing - Linear Probing

Example: Linear Probing

27



Load Factor

What is the most efficient bucket size to select?

This is an important question when implementing a hash map
and can be informed by a property called the load factor.

28



Load Factor

The load factor is computed as

load factor = n
k ,

where

• n is the number of entries in the hash table.
• k is the number of buckets.

29



Load Factor

As the load factor increases, there are less buckets available
per entry.

Thus, the hash map becomes slower as the lookup operation
depends more on collision resolution.

30



Load Factor

A very low load factor is not necessarily better than a finely
tuned one.

If there are many more buckets available than number of
entries, this is simply wasted space.

31



Load Factor

What is the best choice then?

It is usually dependent on your project requirements, but the
goal is to keep the expected constant time search property.

Some common implementations pick a load factor of around
0.7.

32



Load Factor

When the upper bound of the load factor is exceeded based
on some insertion operation, the map must be resized and
rehashed.

33



Rehashing

Rehashing is required when the array is resized.

The naive approach is to simply create a new array (usually
double the size of the original) and copy all entries from the
original array.

34



Rehashing

A glaring issue with this method is that, if the size of the array
is large, it can be very costly to write a table.

35



Rehashing

Example: All-at-once Rehashing

36



Incremental Rehashing

An alternative to creating a new array each time it needs to be
rehashed is to resize incrementally.

37



Incremental Rehashing

The first step is to create a new array.

The original map should stay in memory and any new
insertions should occur in the new array.

38



Incremental Hashing

When an insertion occurs, move r elements from the original
array to the new one.

If the new array is r+1
r times larger than the original, this will

ensure the old array is completely copied before the new
array needs to be resized.

39



Incremental Hashing

During a search or deletion, each array is checked for the
entry.

This must happen until all entries from the original have been
moved over.

Once the original array is empty, it can be released.

40



Computing the Resize Factor

When performing an incremental rehash, we want to make
sure all data is moved from the old map to the new one
before another rehash is required.

As we saw previously, this only requires that we make the new
map r+1

r times larger.

41



Computing the Resize Factor

If we wish to move only a single item at a time, then the new
map should be twice as large.

1+ 1
1 = 2

42



Computing the Resize Factor

For example, let’s say that our original hash map has size 4
with a load boundary of 0.7 and already has 2 entries.

Adding another sample will increase the load factor to 0.75,
triggering a rehash.

43



Computing the Resize Factor

If we use r = 1, then the new map size will be 8.

We insert the new entry into the new map while taking one
from the old map.

The new map has 2 entries with a load factor of 0.25 while the
old map only has a single entry left.

44



Computing the Resize Factor

We then add one more entry into the new map.

Incremental rehashing will take the last entry from the old
map and rehash it into the new one.

We now have 4 samples in the new map with a load factor of
4
8 = 0.5.

45



Computing the Resize Factor

Since the old map is empty, we would release its memory.

We were able to make sure that all samples from the old map
were transferred before hitting the load boundary in the new
map.

46



Computing the Resize Factor

What if we need to bulk import n samples of data into the
map at once?

It would not be optimal to insert each new entry one at a
time, possibly rehashing multiple times in the process.

47



Computing the Resize Factor

Consider a hash map of size 4 with 2 samples already in it.

We wish to load in 4 new samples.

A load boundary of 0.7 means that rehashing begins on the
first sample added.

If we only doubled the size of the map, we would require
another rehash once the last sample is added.

48



Computing the Resize Factor

We need to consider the relationship between the number of
total samples that will be in the map and the load boundary.

n
k < b,

where n is the number of samples, k is the map size, and b is
the load bound.

49



Computing the Resize Factor

In our example, n = 6 and b = 0.7.

The chosen value of k should satisfy

k >
⌈n
b

⌉
k >

⌈ 6
0.7

⌉
k > ⌈8.57⌉
k ≥ 9 50


